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We present here the first search for Standard ModelV H → VWW → lνlνlν production,

whereV is theW andZ weak vector bosons, using 5.9fb−1 of integrated luminosity. This analysis

adds to the existing CDFHWW group’s dilepton analysis two new regions characterized bya tri -

lepton signature, which are chosen to isolate theWH → WWW andZH → ZWW associated

production signals in the three-lepton bin. As such, we define two new regions denoted trilepton-

NoZPeak(for theWH-centered analysis) and trilepton-InZPeak(for theZH-centered analysis)

with which we expect to contribute an additional∼ 5.8% (for mH = 160 GeV) acceptance to the

currentH → WW dilepton analysis. The trilepton-InZPeakregion is defined by events having

at least one lepton pairing (among three possible pairings)with opposite-sign, same flavor, and

a dilepton invariant mass within[91.0, 101.0] GeV–a 10 GeV window around theZ-boson mass.

The trilepton-NoZPeakregion is then defined by those trilepton events which do not match the

InZPeakdefinition. In this note, we shall refer to the study of the trilepton-NoZPeakregion as the

WH analysis and the study of the trilepton-InZPeakregion as theZH analysis, though note that

both regions do contain at least some of both signals.

These two new regions are poised to make a substantial contribution to theH → WW group

result. AtmH = 165 GeV, theWH analysis expected limits reach 8.9 times the standard model

cross section; theZH analysis is set at 12.6 times the expected standard model cross section;

and the combined trilepton analysis is set at 6.3 times the expected standard model cross section.

Finally, for the combinedH → WW analysis result, in the 165 GeV bin the expected limit
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drops from 1.21 for the dilepton analyses alone to 1.15 whilethe observed limit drops from 1.23

to 1.08.[15] As such, we are poised to begin excluding the standard model Higgs boson at95%

confidence level with CDF-only analyses in short order.[16]

Matthew Herndon
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These two new regions are poised to make a substantial contribution to theH → WW group

result. AtmH = 165 GeV, theWH analysis expected limits reach 8.9 times the standard model

cross section; theZH analysis is set at 12.6 times the expected standard model cross section;

and the combined trilepton analysis is set at 6.3 times the expected standard model cross section.

Finally, for the combinedH → WW analysis result, in the 165 GeV bin the expected limit

drops from 1.21 for the dilepton analyses alone to 1.15 whilethe observed limit drops from 1.23

to 1.08.[15] As such, we are poised to begin excluding the standard model Higgs boson at95%

confidence level with CDF-only analyses in short order.[16]
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Chapter 1

Introduction

The Standard Model of particle physics describes the known fundamental constituents of mat-

ter (categorized as “quarks” and “leptons”) and the particles that carry the forces by which they

interact. That is, the electromagnetic force is arises fromthe exchange of a “photon” (γ); the weak

force arises from the exchange of a “weak vector boson” (W+,W−, Z); and the strong force arises

from the exchange of a “gluon” (g). The final piece of the Standard Model is the Higgs boson,

which remains the sole particle whose existence or non-existence has yet to be confirmed experi-

mentally. If the Higgs boson does exist as postulated in the Standard Model, it is a key consequence

of our understanding of the origin of mass in the universe.

The Higgs boson was postulated in 1964 by Peter Higgs as a consequence of a mathemati-

cal mechanism that rectified an apparent contradiction in the fledgling quantum field theories be-

ing formulated at that time. With Schrodinger equation-based quantum mechanics describing the

physics of very small particles and special relativity describing the physics of high energy motion,

physicists were naturally attempting to formulate a theoryconsistent with both realms–effectively,

the physics of high energy fundamental particles. Before the Higgs mechanism was postulated,

there was an inherent contradiction. Particles are known tohave nonzero mass from experience

and experiment, but introducing mass terms directly into the Lagrangian breaks certain symme-

try requirements. The Higgs mechanism resolved the problemand lead to the formulation of a

coherent quantum field theory that allows for massive fundamental particles.

The first serious experimental search for the Higgs boson wasconducted by the Large Electron-

Positron Collider (LEP) at the European Organization for Nuclear Research (CERN “Organisation

Europenne pour la Recherche Nucléaire”) which operated from 1989 to 2000. The Higgs sector
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Figure 1.1 Experimental exclusion limits at95% confidence level from the LEP collider at
CERN.

of the Standard Model does not directly postulate or predictthe mass of the Higgs boson, so a

wide range of possible masses must be explored. LEP experimentally ruled out the existence of a

Standard Model Higgs boson for massesmH < 114GeV/c2. The LEP exclusion limits are shown

in figure 1.1.

The Tevatron, a proton-antiproton (pp̄) collider at the Fermi National Accelerator Laboratory,

has carried the torch since LEP was dismantled in 2000 to construct the Large Hadron Collider

(LHC) in its place. Inpp̄ interactions, the search for the Higgs boson is divided between a “high

mass” region (114 < mH < 135GeV/c2) and a “low mass” region (135 < mH < 200GeV/c2).

Observe in figure 1.2 that this low mass region corresponds tomasses of the Higgs boson where it

decays primarily tob-quark pairs and the high mass region corresponds to masses where it decays

primarily to vector boson (W+,W−, Z) pairs. This thesis contributes a new search for the Standard

Model Higgs boson in the high mass region (H →WW ), orthogonal to and augmenting the search

that preceded it.
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Figure 1.2 Standard Model branching ratios for the Higgs boson at the Tevatron.
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Until recently, the high mass Higgs search exclusively studiedH → WW interactions that

result in a two-lepton signature [16]. The reason is that thedominant production of a high mass

Higgs boson is via gluon fusion, which is then best studied inthe case where both Higgs-W -

bosons decay leptonically. The cases of having one or both Higgs-W -bosons decay hadronically

is severely limited by large backgrounds. This thesis presents for the first time a search for a

high mass Higgs boson in the three-lepton signature, shifting focus to the associated production

channelsWH → WWW → lν, lν, lν andZH → ZWW → ll, lν, jet, where the jet is the result

of aW -boson decaying hadronically.

This dissertation focuses on two new regions chosen specifically to isolate theWH →WWW

andZH → ZWW associated production processes because of their unique characteristics. The

signal ofWH associated production in the three lepton bin requires theW -boson to radiate a stan-

dard model Higgs boson that decays to two moreW -bosons. Subsequently, all threeW -bosons

decay leptonically to produce a trilepton signature. Similarly, theZH associated production signal

requires aZ-boson to radiate a standard model Higgs boson that decays totwo W -bosons. The

Z-boson then decays to two leptons and we need one of the Higgs-W -bosons to decay leptoni-

cally and the other hadronically to produce an exact three-lepton signature (four-lepton events are

rejected from this analysis). Correspondingly, the two newregions we introduce for trileptons in

H → WW are denoted trilepton-NoZPeak(for theWH-centered analysis) and trilepton-InZPeak

(for theZH-centered analysis) to be defined in section 9.2.

The three lepton +E/T signature with an unspecified number of jets is a relatively complex event

topology that introduces a correspondingly large number ofvariables that describe the event. This

is a fortuitous circumstance as it allows the formulation ofmany complex variables that powerfully

discriminate the signals from backgrounds in both of these new trilepton-NoZPeak(WH analysis)

and trilepton-InZPeak(ZH analysis) regions. Together, they represent a strong addition to the

search for the standard model Higgs boson.

We will see in the Results section (section 9.6) that, atmH = 160 GeV, theWH analysis

expected limits reach 8.9 times the standard model cross section; theZH analysis is set at 12.6

times the expected standard model cross section; and the combined trilepton analysis is set at 6.3
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times the expected standard model cross section. Finally, for the combinedH → WW analysis

result, in the 165 GeV bin the expected limit drops from 1.21[15] to 1.15 while the observed limit

drops from 1.23 to 1.08. As such, we are poised to begin excluding the standard model Higgs

boson at95% confidence level with CDF-only analyses in short order.
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Chapter 2

The Higgs Mechanism and the Standard Model of Particle Physics

2.1 Intro. to the Standard Model of Particle Physics

The “Standard Model” of particle physics is a collection of gauge “quantum field theories,” re-

formulations of Schroedinger-based quantum mechanics that are consistent with Einstein’s special

theory of relativity. Of the four known forces in nature (gravity, electromagnetism, weak force,

and strong force), the Standard Model incorporates and establishes a quantum theory for all but

gravity. Although hypothesized models exist, there is not yet a quantum theory of gravity, which

is instead described macroscopically by Einstein’s general theory of relativity.

The standard model is based on the gauge group formed from theproduct space of three spe-

cial unitary gauge groups:SU(3)C × SU(2)L × U(1)Y . TheSU(3)C component represents the

symmetry group describing the strong force interaction, with theC subscript referring to “color

charge” of quantum chromodynamics. The rest of the gauge group is the “electroweak” portion

of the Standard Model, represented by theSU(2)L × U(1)Y group. The “L” refers to theSU(2)

group’s containing particularlyleft-handedweak doublets and the “Y ” (a conserved quantum num-

ber) refers to theU(1) group’sright-handedweak hypercharge singlets.

The Standard Model also contains known particles that interact via these forces. The known

particles are categorized as “fermions” (see section 2.2.1) and “bosons” (see section 2.2.2). The

fermions of the Standard Model are then divided among “quarks” and “leptons,” which are the

known fundamental constituents of matter. The forces by which they interact manifest from the ex-

change of gauge bosons that exist as a consequence of varioussymmetries in the Standard Model’s
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SU(3)C × SU(2)L × U(1)Y gauge group. The existence of all the quarks, leptons, and gauge

bosons described so far have been verified experimentally.

There does remain one last constituent of the Standard Modelhas not yet been experimentally

verified: the Higgs boson. Unlike the other bosons that are related to the forces of nature, the Higgs

boson is postulated as a consequence of a spontaneously broken symmetry in the electroweak

sector (SU(2)L × U(1)Y ) which is hypothesized to be the property of the universe that results in

fundamental particles and weak gauge bosons with non-zero mass. The rest of this chapter will

describe the function of the Higgs boson in the Standard Model and the focus of this thesis is on a

new contribution to the experimental search for the Higgs boson at the CDFII experiment.

2.2 Elementary Particles in the Standard Model

Particle physics is the study of the most fundamental known constituents of matter in the uni-

verse and the forces by which they interact. The “Standard Model” of particle physics is composed

of all known fundamental particles, plus the postulated Higgs boson and the forces by which they

interact.

We separate the known fundamental particles of the StandardModel into two categories:

fermions and bosons.

2.2.1 Fermions

u±
2
3 “up” c±

2
3 “charm” t±

2
3 “top”

d∓
1
3 “down” s∓

1
3 “strange” b∓

1
3 “bottom”

Table 2.1 Quarks of the Standard Model. The superscript indicates the particles’ electric charges
(the top charge refers to the “particles” while the bottom charge refers to the “anti-particles”). As

fermions, all quarks have spin of1/2.

Fundamental particles are known from experiment to have intrinsic angular momentum denoted

colloquially as “spin.” In quantum mechanical systems, particles are capable of assuming only

discrete spin states, just as they are also capable of only discrete energy states. Fermions are
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e∓1 “electron” µ∓1 “muon” τ∓1 “tau”

νe “electron neutrino” νµ “muon neutrino” ντ “tau neutrino”

Table 2.2 Leptons of the Standard Model. The particles in thetop row exist as both “matter”
(electric charge of−1) and “anti-matter” (electric charge of+1). The bottom row consists of the
associated “neutrinos” which have no electric charge. As fermions, all particles listed here have

spin1/2.

defined as particles with half-integer spin magnitudes:1/2, 3/2, 5/2, . . ., where the spin is given

in units of the Plank constant~ = 6.582×10−16(eV·s)[34]. Physically,~ relates cycles (in radians

because~ = h/2π) to energy asE = ~ω. All the fundamental particles listed in tables 2.1 and 2.2

have spin magnitude1/2.

2.2.2 Bosons

Bosons are defined as particles with integer spin magnitudes: 0, 1, 2, . . .. The three forces

of nature described by the Standard Model manifest from an exchange of a boson among the

quarks and leptons. These force-carrying bosons arise fromsymmetries in the Standard Model’s

SU(3)C × SU(2)L × U(1)Y gauge group. They are:

• photons (γ): The gauge boson of theSU(2)L × U(1)Y group which manifests as the elec-

tromagnetic force.

• W+,W−, Z0: The gauge bosons of theSU(2)L ×U(1)Y group which manifest as the weak

force.

• gluons (g): The gauge bosons of theSU(3)C group which manifest as the strong force.

The Standard Model Higgs boson is unique in that it is not associated with a force of nature

and that it arises as a consequence of a broken symmetry referred to as “electroweak symmetry

breaking.” We will look at this electroweak symmetry breaking in section 2.3. Then in section 2.4,

we will see how the fermion masses are consequences of the Higgs field. Section 2.5 will briefly

discuss the role the Higgs boson plays in quark mixing and theCKM matrix. Finally, sections 2.6
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and 2.7 will discuss phenomenological calculations of Higgs production and decay, respectively,

involved in the experimental search covered by this thesis.

2.3 Electroweak Interactions in the Standard Model: Spontaneously Broken
Local SU(2)L × U(1)Y Symmetry

The forces of nature appear to manifest from inherent symmetries. The logical foundation of

a physical system is a postulated “lagrangian,” from which the interactions of nature can then be

derived. When the fields in a lagrangian can be transformed byan arbitrary element of a particular

algebraic “group” and the lagrangian (and therefore the consequential physics) is left unchanged,

then we say the lagrangian is “symmetric” to tranformationsunder that particular group.

Definition 2.1 A groupis a setG along with any binary operation⋆ onG that satisfies the follow-

ing three axioms[21]:

• Associativity:(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), ∀a, b, c ∈ G

• Identity: ∃e ∈ G, denoted theidentity, such that∀a ∈ G we havea ⋆ e = e ⋆ a = e.

• Inverse:∀a ∈ G, ∃a−1 ∈ G, denoted theinverseof a, such thata ⋆ a−1 = a−1 ⋆ a = e.

For electroweak physics, we will be concerned with just two groups:U(1) andSU(2). Both of

these groups are “unitary,” which is critical to establishing such symmetries in the lagrangian.

Definition 2.2 A unitary matrixis ann×n complex matrixM that satisfiesM †M =MM † = In,

whereIn is then-dimensional identity matrix and† denotes the Hermitian conjugate (complex

conjugate and transpose).

2.3.1 GlobalU(1) Symmetry

Definition 2.3 Theunitary groupU(n) is a group of unitaryn× n matrices with the binary oper-

ation of matrix multiplication. TheU(1) unitary group is then the group of complex numbers that

equal 1 when multiplied by their complex conjugate, effectively becoming the group of rotations

in the complex plane via Euler’s relation:cosx+ i sin x = eix.
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Let’s begin by assuming a scalar, complex particleφ = 1√
2
(φ1 + iφ2) and the corresponding

Klein-Gordon lagrangian:

L = (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(2.1)

This lagrangian is invariant to aU(1) “global” (not dependent on spacetime coordinate) trans-

formationφ → φ′ = eiαφ because of the unitary nature ofU(1)[25]. Lagrangians have the

structure of kinetic energy minus potential energy, so the potential described here isV (φ) =

m2
0φ

†φ + 1
4
λ
(
φ†φ
)2

. This potential is symmetric in the complex plane and has an extremum at

the origin. Ifm2
0 > 0, then the extremum is a minimum and we determine the particlespectrum by

calculating perturbative oscillations about the minimum.The system describes a complex scalar

particle of massm0.

However, Higgs phyics in the Standard Model is based onbrokensymmetry, so assumem2
0 < 0.

Now the extremum at the origin is unstable and we instead havea minima circle of radiusv. To

find the particle spectrum in this case, express the fieldφ in polar coordinates

φ(x) =
ρ(x)√

2
︸︷︷︸

Radial Perturbation

· e
i
v
θ(x)

︸ ︷︷ ︸

Angular Perturbation

(2.2)

ρ(x) ≡ v + h(x) (2.3)

and expand about any arbitrary point in the minima manifold.Substituting this form back into the

lagrangian yields

L =
1

2
(∂µh)

2 + v(∂µh) +
1

2
v2 +

(
1

2v2
h2 +

1

v2
hv +

1

2v2
v2
)

(∂µθ)
2 (2.4)

− 1

2
m2

0h
2 −m2

0vh−
1

2
m2

0v
2 − 1

16
λ(h+ v)4 (2.5)

=
1

2
(∂µh)

2 +
1

2
(∂µθ)

2 − 1

2
m2

0h
2 + · · · (2.6)

(2.7)

Hence, we find that the field perturbation in the radial direction h acquires a mass (note: the

direction that climbs the potential) while the angular fieldperturbationθ (note: directed within
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the minima manifold) does not acquire a mass. So field perturbations that climb the potential

represent particle states that acquire mass, while not climbing away from the minima manifold of

the potential keeps the particle massless. Also, given thisparametrization ofφ(x), the vacuum

expectation value is

〈0 | φ | 0〉 = v√
2

(2.8)

See appendix C for a detailed calculation of these results.

This is a situation where a symmetric field potential is spontaneously broken in nature and this

breaking manifests in a physical system different from the situation of the origin being a stable

extremum, in which case the symmetry would not spontaneously break in nature.

2.3.2 LocalU(1) Symmetry

The globalU(1) symmetry of section 2.3.1 is a special case of “local” (the transformationdoes

depend on spacetime coordinate)U(1) symmetry. Now, let the angle of rotation in the complex

planeα depend on coordinate:φ→ φ′ = eiα(x)φ. The lagrangian (eqn. 2.1) of the previous section

is not invariant to localU(1) transformations.

To have a lagrangian that is invariant toU(1) local transformations, we must replace the deriva-

tive with a “covariant derivative”

∂µ → Dµ = ∂µ + iqAµ (2.9)

Thus, to keep the lagrangian invariant, we are postulating the existence of a “gauge field”Aµ and

must introduce kinetic termsF µν = ∂µAν − ∂νAµ for it. So the new postulatedU(1) locally

invariant lagrangian is

L = [(∂µ + iqAµ)φ]† [(∂µ + iqAµ)φ]−
1

4
FµνF

µν − 1

4
λ(φ†φ)2 −m2

0(φ
†φ) (2.10)

(2.11)

where the gauge field itself transforms as

Aµ(x) → A′µ(x) = Aµ(x) +
1

q
∂µα(x) (2.12)
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(see appendix D). If we then use the field parametrization as in theU(1) global case (eqn. 2.2) we

find that the field equation is

�Aν − ∂ν(∂µA
µ) = −v2q2

(

Aν − ∂νθ

vq

)

(2.13)

where on the right hand side we see the angular field perturbation θ in a term that looks just like

the form of the gauge field transformation. As such, define

A′ν = Aν − ∂νθ

vq
(2.14)

Then the field equation becomes

(
�+ v2q2

)
A′ν − ∂ν∂µA

′µ = 0 (2.15)

Thus, because ofU(1) local gauge symmetry, we have two physical consequences: first, we

must postulate the existence of a gauge fieldAµ; second, the symmetry allows us to choose a

particularU(1) transformation that causes the gauge fieldAµ to absorb theθ term and become

massive. This technique will be critical for computing the weak vector bosons and the photon. See

appendix D for a detailed calculation of these results.

2.3.3 GlobalSU(2) Symmetry

Definition 2.4 Thespecial unitary groupsSU(n) are groups ofn × n matrices with determinant

1 that have the binary operation matrix multiplication. Theparticular case ofn = 2 is critical to

electroweak physics.

Consider a doublet of complex scalar particles

φ =




φ+

φ0



 =





1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)



 (2.16)

whereφ+ destroys positively charged particles and creates negatively charged particles, andφ0

destroys neutral particles and creates neutral antiparticles.
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Postulate the form of the lagrangian as a direct generalization of section 2.3.1.

L = (∂µφ)
†(∂µφ)−m2

0φ
†φ− λ

4
(φ†φ)2 (2.17)

wherem2
0 < 0. This lagrangian is not only invariant to globalSU(2) transformations, but also

to the globalU(1) transformations of section 2.3.1 (and appendix C). We treatthe globalSU(2)

case here, soα is not dependent on spacetime coordinate. TheSU(2) transformation takes a form

similar to theU(1) case:

φ→ φ′ = e−
i
2
~α·~τφ (2.18)

where the~τ are the Pauli spin matrices.

To determine the particle spectrum, we again want to find the minima manifold of the potential

and compute oscillations from a point in it. The minimum is found at

∂L
∂(φ†φ)

= −m2
0 −

λ

2
(φ†φ)min = 0 (2.19)

(φ†φ)min =
−2m2

0

λ
≡ v2

2
(2.20)

As before, we take the minimum to be the vacuum.

〈0 | φ†φ | 0〉 = v2

2
= 〈0 | φ2

1 + φ2
2 + φ2

3 + φ2
4 | 0〉 (2.21)

To obtain the particle spectrum we expand the fieldsφ about the choice of vacuum. Again, rather

than a single point, we have a whole space of minima to choose from. Let,

〈0 | φ | 0〉 =




0

v√
2



 (2.22)

Oscillations about this vacuum choice are parametrized by

φ = e−
i
2
(~θ(x)·~τ)v




0

1√
2
(v +H(x))



 (2.23)
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We now have three “angular” field oscillations~θ and one radialH(x). Just as in theU(1) case, the

angular oscillations are massless particles whileH(x) is massive. The lagrangian becomes:

L =
1

8v2
(∂µ~θ · ~τ )(∂µ~θ · ~τ)(v +H)2 +

1

2
(∂µH)(∂µH)− m2

0

2
v2 − m2

0

2
vH − m2

0

2
H2 − λ

4
(v +H)4

(2.24)

where we see mass terms forH(x) and no mass terms for the~θ fields. We will again exploit the

symmetry to gauge the~θ fields away. See appendix E for a detailed calculation of these results.

2.3.4 LocalSU(2) Symmetry

To generalize to localSU(2) symmetry, we again must assume~α to be spacetime coordinate

dependent.

φ(x) → φ′(x) = e
ig
2
~τ ·~α(x)φ(x) (2.25)

where the factorg is inserted to represent the coupling strength.

Just as in the localU(1) case, our particles are not covariant under this transformation unless

we replace the derivatives with suitable covariant derivatives.[12] OurSU(2) covariant derivative

is

Dµ ≡ ∂µ +
ig

2
~τ · ~W µ (2.26)

where ~W µ ≡ (W µ
1 ,W

µ
2 ,W

µ
3 ), a slight precursor to the weak vector bosons. These three gauge

fields transform as (see appendix F for this derivation)

~W ′µ = ~W µ − ∂µ~ǫ(x)− g
[

~ǫ(x)× ~W µ
]

(2.27)

Now that we know how the gauge field and the covariant derivative transform with anSU(2)

gauge transformation, we can compute the consequences fromour basic postulated lagrangian,

which can now be repostulated inSU(2) invariant form

L = (Dµφ)
† (Dµφ)−m2

0φ
†φ − λ

4

(
φ†φ
)2 − 1

4
~Wµν · ~W µν (2.28)
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where ~Wµν ≡ ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν , where the last term is necessary because of the non-

Abelian nature of theSU(2) group.

Note that ifm2
0 > 0, then we just have a system of four scalar particles of massm0. However,

we are interested in them2
0 < 0 symmetry breaking case. Just as for theU(1) case, we want to

find the minima manifold.

∂L
∂(φ†φ)

= 0 (2.29)

(φ†φ)min = −2m2
0

λ
=

1

2

(
φ2
1 + φ2

2 + φ2
3 + φ2

4

)
(2.30)

We must choose some particular point on the minima manifold upon which to expand and calculate

the particle spectrum, so chooseφ1 = φ2 = φ4 = 0 and then we are left with

1

2
φ2
3 =

−2m2
0

λ
(2.31)

φ3 = 2

√

−m2
0

λ
≡ v (2.32)

Then our complex field doublet at this minimum becomes

φmin =
1√
2




φ1 + iφ2

φ3 + iφ4



 =
1√
2




0

v



 (2.33)

Again, completely analogous to theU(1) case, we can parametrize perturbations about this mini-

mum as

φ(x) =
ρ(x)√

2
e

i
v
~τ · ~θ(x) , where (2.34)

ρ(x) =




0

v + h(x)



 (2.35)

and analogous to theU(1) case again, we can choose particularSU(2) transformations to gauge

away the~θ fields to be left with massive gauge bosons~W andH(x). This is another example of

the Higgs mechanism.

See appendix F for a detailed calculation of these results.
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2.3.5 Isospin, Weak Hypercharge, andSU(2)× U(1) Symmetry

We have now discussed the two basic symmetries, invariance to U(1) andSU(2) transforma-

tions that are fundamental to understanding electroweak physics. Just as translational symmetry

implied conservation of momentum and temporal symmetry implies conservation of energy in

classical physics, for example, these symmetries also imply conserved quantities or “quantum

numbers.” FromU(1) symmetry, we have conserved quantum numberY (“weak hypercharge”);

and fromSU(2) symmetry, we have conserved quantum numbert3 (“weak isospin”). In this sec-

tion, we explore the physics implied by symmetries under theproduct groupSU(2)×U(1) and see

that our choice of location on the minima manifold to expand on will leave the vacuum invariant

to a transformation of the form ‘U(1) + 3rd component ofSU(2).’ Y andt3 will together define

the electric charge of the fundamental particles accordingto

Q = t3 +
Y

2
(2.36)

Examples of values for the first generation of quarks and leptons are given in tables 2.3 and 2.4.

Leptons Q t3 Y

νe 0 1
2

-1

e−L -1 -1
2

-1

e−R -1 0 -2

Table 2.3 Weak isospin and hypercharge quantum numbers for the first generation of leptons.
Left and right handed electrons are listed separately.[25]

For a theory that is invariant to local transformations, we must introduce threeSU(2) gauge

fields (see appendix F) and oneU(1) gauge field (see appendix D). Denote them here asW µ
i (x)

for i = 1, 2, 3 andBµ(x), respectively. Also, the derivatives must be replaced witha covariant

derivative for bothU(1) andSU(2).

Dµφ =






∂µ +

ig

2
~τ · ~W µ

︸ ︷︷ ︸

SU(2)piece

+
ig′Y

2
Bµ

︸ ︷︷ ︸

U(1)piece






φ (2.37)
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Quarks Q t3 Y

uL
2
3

1
2

1
3

dL -1
3

-1
2

1
3

uR
2
3

0 4
3

dR -1
3

0 -2
3

Table 2.4 Weak isospin and hypercharge quantum numbers for the first generation of quarks. Left
and right handed quarks are listed separately.[25]

Kinetic terms for the new gauge fields must also be included.

~F µν = ∂µ ~W ν − ∂ν ~W µ − g ~W µ × ~W ν (2.38)

Gµν = ∂µBν − ∂νBµ (2.39)

So the new full lagrangian is

L = (Dµφ)
† (Dµφ) +m2

0φ
†φ− λ

4

(
φ†φ
)2 − 1

4
~Fµν · ~F µν − 1

4
GµνG

µν (2.40)

(2.41)

For electroweak theory, we should be left with three massivegauge bosons (W±, Z) and one

massless gauge boson (photon). Being massless, the photon corresponds to some symmetry that is

left unbroken. Weinberg suggested [12]

〈0 | φ | 0〉 =




0

√
2m0√
λ



 ≡




0

v√
2



 (2.42)

This choice leaves the vacuum invariant to a transformationof U(1)+ third component ofSU(2).

That is,

(1 + τ3)〈0 | φ | 0〉 = (1 + τ3)




0

v√
2



 =




2 0

0 0








0

2√
2



 =




0

0



 (2.43)

where the~τ are the Pauli matrices. This is also why we eventually find theelectric charge to be

expressed in terms of weak hyperchargeY and third component of isospint3 [25]. We are about to
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see that this interplay between theU(1) symmetry (corresponding toY ) and the third component

of SU(2) symmetry (corresponding tot3) manifests as a mixing of theW µ
3 andBµ gauge fields to

yield the photon fieldAµ and the neutral weak vector bosonZ.

To consider oscillations about the vacuum, parametrize thedegrees of freedom by

φ = e−
i
2v

~θ(x)·~τ




0

1√
2
(v +H(x))



 (2.44)

However, recall that the three~θ field perturbations, which would become Goldstone bosons, dis-

appear if we make the appropriate gauge transformation. So we effectively use

φ =




0

1√
2
(v +H(x))



 (2.45)

The consequences for the lagrangian are (details of how the following form of the lagrangian are

calculated are in appendix J)

L =
1

2
(∂µH)(∂µH) +

m2
0

2
(v +H)2 − λ

16
(v +H)4 − 1

4
~Fµν · ~F µν − 1

4
GµνG

µν (2.46)

L =
1

2
(∂µH)(∂µH) +

m2
0

2
(v +H)2 − λ

16
(v +H)4 (2.47)

− 1

4
(∂µW1ν − ∂νW1µ)(∂

µW ν
1 − ∂νW µ

1 ) +
1

8
g2v2W1νW

ν
1 (2.48)

− 1

4
(∂µW2ν − ∂νW2µ)(∂

µW ν
2 − ∂νW µ

2 ) +
1

8
g2v2W2νW

ν
2 (2.49)

− 1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂νW µ

3 )−
1

4
GµνG

µν (2.50)

+
1

8
v2(gW3µ − g′Y Bµ)(gW

µ
3 − g′Y Bµ) + Higgs interactions (2.51)

The second and third lines show that theW1 andW2 gauge fields are massive and have the same

massmW = gv

2
. These are theW+,W− vector gauge bosons in electroweak theory. The Higgs

interaction terms are being ignored here because we are focusing on the generation of the Standard

Model gauge bosons in this section. In appendix J, I go through the details of deriving the full

version of this and discuss the interactions between the Higgs and gauge bosons that are produced.
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The Higgs boson decaying to gauge bosons is precisely the kind of interaction that this dissertation

explores experimentally.

The last two lines show that the gauge fieldsW3 andB are mixed. The key clue is to notice in

the last line it is the combination(gW µ
3 −g′Y Bµ) that has a mass. Introduce the linear combinations

Zµ ≡W µ
3 cos θW − Bµ sin θW (2.52)

Aµ ≡W µ
3 sin θW +Bµ cos θW (2.53)

where

cos θW =
g

√

g2 + g′Y 2
(2.54)

sin θW =
g′Y

√

g2 + g′Y 2
(2.55)

Using this, we can write the last two lines of the lagrangian in terms ofAµ andZµ, instead ofBµ

andW µ
3 . They become:

−1

4
(ZµνZ

µν + FµνFµν) +
1

8
v2ZµZ

µ(g2 + g′Y
2
) (2.56)

for Fµν ≡ ∂µAν − ∂νAµ andZµν ≡ ∂µZν − ∂νZµ.

Hence, we have unmixed the two fields. They become theZ boson and the photon.

mZ =
1

2
v2
√

g2 + g′Y 2 =
mW

cos θW
(2.57)

mA = 0 (2.58)

whereY = 1 andt3 = −1/2 breaks bothSU(2) andU(1)Y symmetries, but leaves theU(1)em

symmetry unbroken (Q = t3 + Y/2 = −1/2 + 1/2 = 0).[25]

See appendix G for a detailed calculation of these results.

2.4 The Higgs Mechanism and Fermion Masses

Section 2.3 exploredSU(2)×U(1) spontaneous symmetry breaking and the Higgs mechanism

for scalar particles, with Klein-Gordon lagrangians. However, leptons and quarks are fermions. We
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will first explore spontaneousSU(2)L×U(1)Y symmetry breaking for a massless fermion doublet,

then focus on how the Higgs mechanism generates the fermion masses. We will also see that the

same covariant derivatives used for scalar particles will be applicable here and produce the gauge

bosons.

For more extensive computational details pertinent to thissection, please refer to the appendices

H and I.

2.4.1 SU(2)× U(1) Symmetry For Massless Fermions

We know now from section 2.3 what our postulated lagrangian should look like in order to be

bothU(1) andSU(2) invariant, which necessarily involved the weak vector bosons and the photon.

Let’s look atSU(2) × U(1) gauge invariance for the first generation of quarks; the calcuation is

identical for the higher generations. The calculation for the lepton generations is also very similar

and so not repeated in this dissertation.

The Higgs mechanism isnot included here so the quarks will still be massless; that willbe

dealt with in section 2.4.2. Instead, we will deal with fermions that appear as a left-handed doublet

and right-handed singlets for both particles.

Suppose we have the (fermion) quark doublet

q =




u

d



 (2.59)

and recall that

ψL =

(
1− γ5

2

)

ψ (2.60)

ψR =

(
1 + γ5

2

)

ψ (2.61)

are relations distinguishing the left and right handed components.

As always, we must postulate a lagrangian. In the sections exploringU(1) andSU(2) symme-

tries, we used generalizations of the Klein-Gordon equation’s lagrangian for scalar particles. Now

we want to look at spin-1/2 fermions, so we must use the Dirac lagrangian in our gauge invariant

form.



21

Recall the Dirac lagrangian

L = iψ̄γµ∂
µψ −mψ̄ψ (2.62)

Now we want a massless version for a fermion doublet:

L = q̄iD/q (2.63)

L = q̄LiD/LqL + ūRiD/RuR + d̄RiD/RdR (2.64)

where the covariant derivative for the doubletD/L is SU(2)× U(1) invariant, andD/R is onlyU(1)

invariant for the singlet:

Dρ
L = ∂ρ +

ig

2
~τ · ~W ρ +

ig′Y

2
Bρ (2.65)

Dρ
R = ∂ρ +

ig′Y

2
Bρ (2.66)

After exhaustive computation reminiscent of previous sections (and found in appendix H) we arrive

at

L = iūγρ

(
1 + γ5

2

)

(∂ρu) + id̄γρ

(
1 + γ5

2

)

(∂ρd) + iūγρ

(
1− γ5

2

)

(∂ρu) + id̄γρ

(
1− γ5

2

)

(∂ρd)

(2.67)

+
1√
2
gūγρW

ρ

(
1− γ5

2

)

d+
1√
2
gd̄γρW

ρ†
(
1− γ5

2

)

u (2.68)

+
g

2 cos θW
Zρ

[

ūγρ

(
1 + γ5

2

)

u

(
4

3
sin2 θW

)

− d̄γρ

(
1 + γ5

2

)

d

(
2

3
sin2 θW

)

(2.69)

+ ūγρ

(
1− γ5

2

)

u

(

−1 +
4

3
sin2 θW

)

− d̄γρ

(
1− γ5

2

)

d

(

−1 +
2

3
sin2 θW

)]

(2.70)

− 2e0
3
ūγρuA

ρ +
e0
3
d̄γρdA

ρ (2.71)

where the electric charge isdefined ase0 = g sin θW . This form illustrates the interactions among

the quarks in the fermion doublet and the gauge bosons.
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2.4.2 The Higgs Mechanism in Fermion Mass Generation

The kinetic part of a free Dirac fermion does not mix the left and right components of the field:

ψ̄γµ∂
µψ = ψ̄Rγµ∂

µψR + ψ̄Lγµ∂
µψL (2.72)

Because of this, we can gauge the left and right handed components differently. Weak interactions

are parity violating in the Standard Model and theSU(2)L covariant derivative acts only on the

left-handed term. However, a Dirac mass term has the form

−m
(
ψ̄LψR + ψ̄RψL

)
(2.73)

when we write the left and right handed components separately. So the components are coupled,

meaning any such mass term breaksSU(2)L gauge invariance.

In a theory with spontaneous symmetry breaking, there is a way of giving mass to fermions

without explicitly introducing gauge invariance breakingmass terms in the lagrangian. Consider

the electronSU(2)L doublet

l =




ν

e





L

(2.74)

the Higgs doublet

φ =




φ+

φ0



 (2.75)

φ+ =
1√
2
(φ1 − iφ2) (2.76)

φ0 =
1√
2
(φ3 − iφ4) (2.77)

and the right handed electron singlet in a Yukawa model.

Le = −gel̄LφeR − geēRφ
†lL (2.78)

Recall from section 2.3.5 that the vacuum expectation valueof the Higgs doublet assumes the

value

〈0 | φ | 0〉 =




0

v√
2



 (2.79)
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The consequence for a fermion doublet in this lagrangian is

Le = −gel̄LφeR − geēRφ
†lL (2.80)

= −gev√
2
[ēLeR + ēReL] (2.81)

This is exactly a Dirac mass withme =
gev√
2
. That was precisely the vacuum. Now let’s see that if

we consider also oscillations about the vacuum we generate acoupling between the electron and

the Higgs field. In the last line, usev +H instead of justv.

〈0 | Le | 0〉 = −gev√
2
[ēL(v +H)eR + ēR(v +H)eL] (2.82)

= −gev√
2

[

vēe
︸︷︷︸

Dirac electron mass

+ ēHe
︸︷︷︸

electron-Higgs coupling

]

(2.83)

Notice for the coupling term
(−ge√

2

)

ēHe =

(

−me

v

)

ēHe =

(

− gme

2mW

)

ēHe (2.84)

So in addition to interations of the formf f̄ → (γ orZ0) → W+W− we also have the possibility

f f̄ → H → W+W−–precisely the interaction this dissertation conducts an experimental search

for. The presence of the fermion mass in the coupling to the Higgs is significant.

Summarily, to give the electron-neutrinoSU(2) doublet mass (as well as the other lepton and

quark doublets), we are adding more terms to the lagrangian derived at the end of section H of the

form:

Lf,Higgs =
∑

l=e,µ,τ

[

− gl√
2

[

vl̄l + l̄Hl

]

− gνl√
2

[

vν̄lνl + ν̄lHνl

]]

(2.85)

for the three lepton generations and similar terms for the three quark doublets. Because of the

Higgs mechanism, we now have sensible masses for Standard Model particles; however, it should

be noted that this does not quite give the final form of the quark mass terms. A similar treatment for

all three generations of quarks yields a results that includes “quark mixing,” the ability of quarks

to change flavor via charged weak interations in which the Higgs boson plays a central role. This

treatment is outlined in section 2.5. (See appendix I for more details).
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2.5 The Higgs Field, Quark Mixing, and theCKM Matrix

Generating the masses of quarks and leptons is not the only function the Higgs boson serves in

the Standard Model. It also plays a central role in “quark mixing,” the ability of quarks to change

flavor via weak charge changing interactions.

Consider three doublets of left-handed quark fields:

qL1 =




uL1

dL1



 ; qL2 =




uL2

dL2



 ; qL3 =




uL3

dL3



 (2.86)

and the six corresponding right-handed singlets:uR1, dR1, uR2, dR2, uR3, dR3. The lagrangian is

then similar to the case for leptons already considered. Thedifference is that there are three quark

families and eachSU(2)L scalar (such as̄qLiφc) can be paired with any of the threeuRj, for

i, j ∈ {1, 2, 3}. So allowing “mixing” of the families results in nine pairings. The nine couplings

form the3× 3 CKM matrix.

We begin with the lagrangian

L =
∑

{i,j}=1,2,3

[

aij q̄LiφcuRj + a†ij ūRjφ
†
cqLi + bij q̄LiφdRj + b†ij d̄Rjφ

†qLi

]

(2.87)

So far,aij andbij may be any complex value and are included as values to gauge the coupling

strength. After much working over, the lagrangian becomes[12]

L =
∑

k

[

ma,k

(

ūLkuRk

(

1 +
H

v

)

+ ūRkuLk

(

1 +
H

v

))

(2.88)

+mb,k

(

d̄LkdRk

(

1 +
H

v

)

+ d̄RkdLk

(

1 +
H

v

)]

(2.89)

wherev appears again from the parametrization of the potential minimum in the Higgs mechanism,

andma,k = akkv/
√
2, mb,k = bkkv/

√
2 are the quark masses. Notice also that quark couplings to

the Higgs boson are another consequence.

It is important to note that the mass and Higgs interaction terms are not the only places that

quark field appear in the Standard Model lagrangian. There were certain variable transformations

performed to get this result– whose details are not pertinent to this disseratation–that must be
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propagated in the terms of line 2.68, above. Beginning with that line for all three generations of

quarks:

∑

k=1,2,3

1√
2
gūkγρW

ρ

(
1− γ5

2

)

dk +
1√
2
gd̄kγρW

ρ†
(
1− γ5

2

)

uk (2.90)

We now perform a change of variables on theu andd quarks with unitary matricesS andT :

uk = Ukiui (2.91)

dk = Skjdj (2.92)

to get the following:

=
g√
2

∑

i,j,k

[

(Ukiui)
†γ0W/ (Skjdj)

(
1− γ5

2

)

+ (Skjdj)
†γ0W/

†(Ukiui)

(
1− γ5

2

)]

(2.93)

=
g√
2

∑

i,j,k

[

u†iU
∗
ikγ0W/ Skjdj

(
1− γ5

2

)

+ d†jS
∗
jkγ0W/

†Ukiui

(
1− γ5

2

)]

(2.94)

=
g√
2

∑

i,j,k

[

ūiW/ dj(U
∗
ikSkj)

(
1− γ5

2

)

+ d̄jW/
†ui(S

∗
jkUki)

(
1− γ5

2

)]

(2.95)

(2.96)

That is, the charge changing weak interactions link the three ui quarks with a unitary rotation of

the triplet ofdi quarks, with this rotation given by the unitary matrixV ≡ U †S,

V =








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








(2.97)

2.6 Higgs Boson Associated Production with a Vector Boson

There are four major way to produce a Standard Model Higgs boson in the mass range relevant

to the high mass search: gluon fusion, vector boson fusion, associated production with aW -boson,

and associated production with aZ-boson. In theH → WW trilepton channel, only the two

associated production processes contribute a non-negligible amount of signal.
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The Tevatron consists of a proton beam and an anti-proton beam that collide within the heart of

the CDF detector. Protons are composite particles of two up quarks and one down quark while anti-

protons are composed of one up quark and two down quarks, so the specific interactions involved

are:

• u+
2
3 + d̄+

1
3 →W+ → HW+

• ū−
2
3 + d−

1
3 →W− → HW−

• q̄ + q → Z → HZ

To calculate the cross section for one of these interactions, we begin with the fundamental

postulate of experimentally verified physics (except, of course, for the Higgs boson itself): the

Standard Model Lagrangian. The relevant terms for the first interaction listed above, for example,

are:

L =
1

2
(∂µH) (∂µH) +

1

2
µ2H2 +

g2v2

4
W †

µW
µ +

g2v

2
W †

µW
µH

︸ ︷︷ ︸
Higgs Sector

(2.98)

−1

4

∑

i=1,2

(∂µWiν − ∂νWiµ) (∂
µW ν

i − ∂νW µ
i )

︸ ︷︷ ︸
W boson kinetic terms

(2.99)

+iuγρ

(
1− γ5

2

)

∂ρu+ idγρ

(
1− γ5

2

)

∂ρd+
gVud√

2
dγρW

†ρ
(
1− γ5

2

)

u

︸ ︷︷ ︸
Quark Doublet

(2.100)

We see in the first line the “Higgs Sector” which contains the kinetic term for the Higgs boson,

the self-energy of the Higgs boson andW boson, and the term allowing interactions between

theW -boson and the Higgs boson. The second line contains theW -boson kinetic terms and the

third line yields the left-handed quark doublet (the
(
1−γ5
2

)
factor ensures left-handedness) and

their interaction with theW -boson. Following the computations of appendix K, we arriveat the

invariant amplitude.

iM =

[

−i αmWVud√
2 sin2 θW

]

ǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

d̄r1(p′)γρ

(
1− γ5

2

)

ur2(p) (2.101)
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The next step in finding the differential cross section is to compute|M|2, for which we first

needM∗.

M∗ = − αmWVud√
2 sin2 θW

[

ǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

d̄r1(p′)γρ

(
1− γ5

2

)

ur2(p)

]∗
(2.102)

= − αmWVud√
2 sin2 θW

ūγρ

(
1− γ5

2

)

d

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

ǫsµ(k
′) (2.103)

The beam at the Tevatron is unpolarized, so average over spins r1, r2 of the quarks. The polar-

ization of the end states is not measured, so the cross section is a sum of the possible polarization

states of theW . As such, we want to compute

1

2

∑

r1

1

2

∑

r2

∑

s

|M|2 (2.104)

To do this, we use the spin sums (see eqns. (3.66), (3.67) of Peskin and Schroeder [33])
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to get
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H(p)

)1λ,1(k+W

)2λ,2(k-W

It remains to evaluate the trace and simplify the terms, thenuse the invariant amplitude squared to

compute the cross section with general form [33]

dσ =
1

2EA · 2EB|vA − vB|

[
d3k

2Ek(2π)3
d3k′

2E ′
k(2π)

3

]
1

4

∑

r1,r2,s

|M|2(2π)4δ4(k + k′ − p− p′)

(2.112)

where|vA − vB| ∼= 2c is the relative velocity difference in the lab frame.

Finally, the cross section for Higgs boson associated production with aW boson is (in terms

of the Mandelstam variables) [13]

σ(ud̄→WH) =
πα2|Vud|2
36 sin4 θW

2k√
s

k2 + 3m3
W

(s−m2
W )2

(2.113)

Similarly, the cross section for associated production with aZ boson is[13]

σ(qq̄ → ZH) =
2πα2(l2 + r2)

144 sin4 θW cos4 θW

2k√
s

k2 + 3m3
Z

(s−m2
Z)

2
(2.114)

wherel ≡ 2(t3−Q sin2 θW ), r ≡ −2Q sin2 θW ,Q is the electric charge, andt3 is the weak isospin

quantum number.

2.7 Higgs Boson Decay (H → WW )

Now that we have a physical model with a Higgs boson and have computed the cross sections

of its production channels pertinent to our experimental search, let’s see how it decays.

Consider the decay in figure 2.7. The lagrangian density for aStandard Model Higgs boson

decaying to twoW -bosons comes from the Higgs sector of the Standard Model lagrangian.
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L =
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(2.117)

The decay rate derived from this lagrangian is (see appendixL for details):
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Chapter 3

The Tevatron

This contribution to the search for the Standard Model Higgsboson is conducted at the Fermi

National Accelerator Laboratory with the “Tevatron,” a roughly four mile circular track around

which protons and antiprotons are accelerated and collidedwith a center of mass energy of1.96

TeV. These collisions occur at the “Collider Detector at Fermilab” experiment (CDF) where the

data is recorded for future analysis. The collection, manipulation, and collision of protons and

antiprotons is a formidible task. This chapter oulines process that leads to the colliding beams of

the Tevatron while the CDF collider experiment is detailed in chapter 4

Figure 3.1 illustrates the stages of producing the colliding beams, beginning with the Cockcroft-

Walton site and ending with the Tevatron collisions in the CDF and D0 experiments.

3.1 Beginning of the Beam: Cockcroft-Walton

The beams begin simply as hydrogen gas. The gas is injected into an electric field that is

strong enough to strip the electrons from the hydrogen nuclei, leaving positively charged hydrogen

ions (H+). In the electric field, these ions are then directed towardsa cesium anode where they

acquire two electrons, becomenegativelychargedH− ions now. With a newly acquired negative

net charge, theseH− ions are repelled from the anode and accelerated to750 KeV by a Cockcroft-

Walton accelerator–a type of Van de Graaf accelerator–towards a linear accelerator.
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Figure 3.1 The Tevatron Accelerator Chain [10]
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3.2 LINAC: The Linear Accelerator

The750 KeV hydrogen ions enter a linear accelerator that operates with a succession of drift

tubes generating an electric field oscillating with a radio frequency.H− ions arriving at the linac

in phase with the field oscillation are accelerated to400 MeV over a distance of 130 meters, while

those arriving out of phase with the linac’s field are lost. This creates a beam of discrete bunches

of ions rather than a steady stream. At the end of the linac, the bunched beam of ions impigns on

a carbon barrier that strips the electrons from the hydrogennuclei which are now just protons that

pass.

3.3 Booster

Observe in figure 3.1 that the linac tangentially intersectsthe circular “booster.” Sequentially,

this is the first synchrotron–a circular accelerator with carefully synchronized electric and magnetic

field to direct the beam of ions–that the protons encounter ontheir path to the colliders. The booster

accelerates the protons from400 MeV to 8 GeV.

3.4 Main Injector

After being ramped to an energy of8 GeV in the Booster, the protons are redirected towards

the “main injector”–another larger synchrotron that accelerates the proton bunches to150 GeV

for injection into the Tevatron. The main injector also plays a central role in the production of

the antiprotons. Some protons from the main injector are used to produce antiprotons, which are

accumulated separately. They are then also directed into the main injector which will inject the

antiprotons into the tevatron. [2]

3.5 Anti-protons

Protons in the main injector are accelerated to150 GeV if they are to be injected into the

Tevatron, but are accelerated to120 GeV if they are to be used for antiproton production. These

120 GeV protons are directed to impact a nickel-based target every 1.5 seconds causing a variety
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of interactions. For every one million protons that hit the nickel target, only∼ 20 antiprotons are

produced with enough energy to enter the “accumulator.”

After passing the nickel target, the products pass through a“lithium lens” that focuses them

into a beam that passes through a magnet. This magnet then filters the antiprotons by redirecting

them on a unique path that leads them to the “debuncher.” Because of the radio-frequency used to

accelerate the120 GeV protons in the main injector, the antiprotons are still in a beam of discrete

bunches. These antiprotons also have a large spread in energy, so the debuncher is tuned in a way

that decelerates higher energy antiprotons and accelerates lower energy antiprotons.

After the debuncher is finished with the antiprotons, they are successively stored in the “accu-

mulator” at8 GeV over many hours (or even up to a few days) while waiting to be transferred to

the Tevatron for a fresh beam. When the Tevatron is ready for new colliding beams, the antiprotons

are transferred from the accumulator to the “recycler” (also an8 GeV ring) before moving on to

the main injector and the Tevatron. [1]

3.6 The Tevatron

The first version of the tevatron became operational in 1983.It was the world’s first supercon-

ducting synchrotron, containing about 1000 superconducting magnets. Because superconducting

wires provide no resistance to the flow of charge, stronger magnetic fields are achievable and op-

erational costs are reduced because electricity is not lostto dissipation.

The collider physics program at the Tevatron is separated between aRun I (1992-1996,1.8

TeV) andRun II (2001-present,1.96 TeV). As the Tevatron approaches the last years ofRun

II operation, the CDF and D0 experiments are quickly closing inon achieving Standard Model

sensitivity for the Higgs boson search. [9]

The Tevatron receives the proton and antiproton beams from the main injector, both at150 GeV.

Both beams are injected in 36 discrete bunches, though not inequal densities since antiprotons are

far more difficult to collect than protons. Each bunch contains on the order of1011 protons or1010

antiprotons.
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Once all 36 bunches of each beam have been injected into the Tevatron, the beam is ramped

from the150 GeV to its colliding energy of980 GeV. They are then focused, or “squeezed,” and

collimaters are used to absorb extraneous particles orbiting the beam. This is sometimes denoted

the “beam halo.”

The instantaneous luminosity for the collisions is given by:

Linst. =
36fNpNp̄

4σxσy
(3.1)

where the36 denotes the number of bunches in each beam,f is the frequency of the revolutions,Np

is the number of protons in the bunch,Np̄ is the number of antiprotons in a bunch, andσx, σy are

Gaussian profiles of a transverse cross section of the beams.Integrated (over time) luminosities are

typically given in units of inverse barns, which can then be easily multiplied by the cross section for

a particular process (units in barns) to obtain the expectednumber of occurances for that physical

interaction. [3]

3.7 The Performance of the Tevatron in Run II

As of March 30, 2010, the Tevatron is no longer the world’s most powerful particle collider.

The LHC produced collisions at7 TeV. However, the Tevatron continues to produce impressive

results. During the same calender month, the Tevatron broketwo of its own records: it delivered

272.7pb−1 of integrated luminosity and saw an initial instantaneous luminosity record of371 ×
1030cm−2s−1. It has also been consistently seeing initial instantaneous luminosities of∼ 350 ×
1030cm−2s−1. Further, figure 3.1 illustrates consistent and accelerating progress in data delivery.

As such, the Tevatron will still retain a leading role in particle physics research for at least the

next few years as of this writing (spring 2010).
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Figure 3.2 The Tevatron Run II luminosity performance [7]
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Chapter 4

The CDF II Detector

The CDF experiment resides at the B0 site of the Tevatron and is one of two experimental

detectors that collide the proton-antiproton beams to record the consequences of the collisions.

The present incarnation of the CDF detector (“Run II”) has been operational since 2001. It was

originally designed with several specific purposes in mind:[20]

• Study the properties of the top quark

• Obtain more precise measurements of important quantities in electroweak physics

• Test perturbative Quantum Chromodynamics

• Constrain the CKM matrix with measurements ofB decays

• Directly search for new physics

Since the Higgs boson has not been experimentally verified, the study presented in this disser-

tation falls into the “search for new physics” category, though is certainly related to electoweak

measurements as well.

An overview of the experimental apparatus can be seen in figure 4.1. It contains a variety

of different detection systems designed to collectively distinguish a variety of objects that may

result from thepp̄ collisions. Closest to the beamline is the silicon detector, which records the

tracks of charged particles like leptons and charged hadrons. The silicon is encased in the “Central

Outer Tracker” (COT), which also provides tracking information (see section 4.2). The next layer

outward is the electromagnetic calorimeter, which is designed to absorb and measure the energy
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Figure 4.1 The CDF II Detector
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Figure 4.2 Diagram showing the types of objects various layers are constructed to detect.

of photons and electrons as indicated by figure 4.2. Hadrons tend to be more massive and are

measured in the subsequent “hadronic calorimeter” (see section 4.3). Though charged, muons tend

to punch through the calorimeter system and are then detected by one of several muon detection

systems (see section 4.4).

The various systems are used interactively to detect any particular kind of object. Electrons

are tracked through the silicon and COT, then these tracks are matched to energy deposits in the

electromagnetic calorimeter, for example. Muons are also tracked through the silicon and COT,

then matched to signals left in the muon system. Jets are collections of particles that deposit energy

in both the electromagnetic and hadronic calorimeter systems. All together, the CDF detector is

designed to record the presence of any kind of electron, muon, photon, or jet produced inpp̄

collisions.

4.1 CDF Coordinates

Tracking the paths of various detector quantities requiresa common coordinate system and

CDF places the origin at the center of the experiment, on the beamline, where collisions are most
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likely to occur. The positivex coordinate points radially away from the center of the Tevatron,y

points vertically upward, andz is directed tangent to the path of the proton beam.

The azimuthal angle is denotedφ and given by

φ = arctan

(
y

x

)

(4.1)

The polar angle is denotedθ and given by

θ = arctan

(
y

z

)

(4.2)

The angleθ, however, is not often used. Instead, we use “pseudorapidity,” where “rapidity” is

defined as

rapidity=
1

2
ln
E + pz
E − pz

(4.3)

and in its massless approximation (p >> m) becomes pseudorapidity:

η = − ln tan

(
θ

2

)

(4.4)

4.2 Trackers

The CDF II tracking system is composed of three major components: a silicon microstrip

system that provides precise tracking of charged particlesclose to the beamline; the “Central Outer

Tracker” (COT) that envelops the silicon system; and finallya solenoid magnet generating a 1.4 T

field along thêz direction. The two tracking systems trace the paths of charged particles while the

solenoid’s field causes those paths to follow a helical pattern. Positive and negative charges can

then be distinguished by the direction the helical path curves, while the particle’s momentum can

be calculated by the magnitude of the curvature.

4.2.1 The Silicon Detectors

The CDF II silicon detector is composed of three components:L00, SVXII, and ISL. Layer

zero-zero (L00) is a single sided, radiation tolerant silicon strip detector, which is closest to the
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Figure 4.3 Diagram showing a side view of the tracking, solenoid, and forward calorimeter
systems. The horizontal axis is theẑ-direction from the interaction vertex and the vertical axis is

the radial direction from the beamline.

2.2 cm

64 cm 

SVX II

 ISL

Layer 00

Figure 4.4 End view of L00 (left) and the full silicon system (right)[4],[5]



41

beamline. It is 87 cm long, centered onz = 0, and has a radius of just1.1 cm (see figure 4.4). L00

is constructed in six segments in bothz andφ. Eachφ segment contains 128 channel of narrow,

inner sensors and 256 channels of wider, outer sensors. Eachz segment is composed of two long

sensors. In total, L00 contains 13,824 channels. [4]

The SVX II silicon detector encapsulates L00. It is composedof three barrels, positioned end-

to-end to achieve a length of 81 cm and full coverage inφ. Each barrel contains five layers of

silicon microstrip detectors ranging from 2.4 cm to 10.6 cm from the beamline. In all, the SVX

contains 405,504 detection channels and covers|η| < 2.0.[5],[20]

The “intermediate silicon layers” (ISL) are the outermost section of the silicon detector system,

between the SVX and the COT (see figure 4.3). The ISL are an important compliment to the SVX

and COT (see section 4.2.2) in that they provide extra tracking information in1.0 < |η| < 2.0,

where COT coverage is partial. In this forward region, thereare two silicon layers placed at 20 cm

and 28 cm from the beamline. there is also an additional ISL layer in the central region at 22 cm

from the beamline. [6],[20]

4.2.2 Central Outer Tracker

The CDF Central Outer Tracker (COT) compliments the silicontracking system to provide

additional tracking information. It covers the comparatively larger range of 40 cm to 130 cm

from the beamline and is approximately three meters long. Instead of the wafers of silicon, the

COT operates as a 96-layered drift chamber. The 96 layers arepartitioned into 8 “superlayers”

alternating between axial and stereo. “Axial” layers provide hit coordinates in the transverse plane

(radial and azimuthal angle) while “stereo” layers supply the z coordinate, together yielding hit

information in three dimensions.

The COT is filled with an equal mixture of argon and ethane in anelectric field. When a

charged particle enters the COT apparatus, it ionizes the gas by creatinge+e− pairs. Electrons then

drift under the influence of the electric field toward anode wires and signals are induced from the

flow of charge.[8],[19]
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Use of these tracking systems–in conjuction with the calorimeters and muon systems– is criti-

cal to the detection of leptons emanating from thepp̄ collisions. This dissertation is devoted to the

rare events that contain three recognized leptons, so a clear understanding of how physical leptons

produced inpp̄ interactions translate into detected leptons used for analysis is critical. This disser-

tation devotes chapter 6 to a detailed understanding of how the CDF subsystems are collectively

used to identify leptons from charged tracks and other detector information.

4.3 Calorimeters

The calorimeter systems are located outside the solenoid and record the energies of particles

resulting frompp̄ interactions. They are composed of scintillators with layers of heavy metal to

induce electromagnetic or hadronic showers.

Electromagnetic showers are induced for high energy photons and electrons via a combination

of bremsstrahlung and pair production. When impigning on the heavy metal layer, a high energy

electron will radiate high energy photons, which then converts to eē pairs, which go on to emit

more photons, etc. This cycle continues until the individual photons and electrons no longer have

enough energy to pair-produce and the ionization loss prevents further radiation. The physical

depth acheived by this “shower” is then an indicator of how much energy the original electron or

photon posessed. [32]

Hadronic showers occur when a high energy hadron experiences an inelastic nuclear collision

with the heavy metal layer, producing secondary hadrons that go onto have their own collisions.

This cycle continues until the individual hadrons no long have enough energy to break up nuclei.

Hadrons tend to be much more massive than electrons and a relatively large amount of energy is

released from nuclear interactions, so the depth that a hadronic shower penetrates is largers and

such calorimeters must be physically larger than the electromagnetic calorimeters.[32]

4.3.1 CDF Central Electromagnetic Calorimeter (CEM)

CDF’s central electromagnetic calorimeter (CEM) is composed of 48 wedges that each cover

15◦ in azimuth and0.11 in pseudorapidity (η). Each15◦ wedge has alternating lead and scintillator
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layers. The energy resolution (in GeV) of the EM calorimeteris

δE

E
= 13.5%/

√

ET + 1.7% (4.5)

[20]

4.3.2 CDF Hadronic Calorimeters (CHA,WHA)

The central hadronic calorimeter (CHA) and the endwall hadronic calorimeter (WHA) wedges

are composed of alternating layers of iron and scintillator. Both the CHA and WHA are an array of

48 wedges, with the CHA covering|η| < 0.9 and the WHA covering0.7 < |η| < 1.3. The energy

resolution of the CHA and WHA detectors are

δE

ET

=
50%√
ET

(4.6)

and

δE

ET

=
75%√
ET

(4.7)

repsectively.

4.3.3 CDF Forward Calorimeters (PEM, PHA)

The forward calorimeters are also divided between a “plug electromagnetic calorimeter” (PEM)

and a “plug hadronic calorimeter” (PHA), covering1.1 < |η| < 3.6 and1.2 < |η| < 3.6, respec-

tively. The design and function is similar to the central calorimeters. The energy resolution of the

PEM is

δE

E
= 16%/

√

ET + 1% (4.8)

and the energy resolution of the PHA is

δE

E
= 80%/

√

ET + 5% (4.9)

[20]
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4.4 Muon Detectors

The first thing to know about muon detectors is that there is nosuch thing as a muon detector,

just a charged particle detector located behind so much material that only muons tend to reach it.

Given that, the CDF muon detectors are located outside the calorimeter system from the beam-

line. This way, any high energy photons will have already been absorbed by the EM calorimeter

and any high energy hadrons will have already been absorbed by the hadronic calorimeter–aside

from the occasional “punch through” hadron. The three muon detectors used for this analysis are

the “Central MUon chambers” (CMU), “Central Muon uPgrade” (CMP), and the “Central Muon

eXtension” (CMX). Not used is the “Intermediate MUon” (IMU)system in the forward region

of the detector (|η| > 1.0), which contains the “Barrel MUon” chamber (BMU) and BSU/TSU

scintillators (see table 4.1 for a summary).

The CMP and CMX muon detectors contain two systems: a stack offour single-cell drift

chambers that provide a short track called a “stub” and a scintillation counter. The CMU has only

a drift chamber. These muons detectors are used in tandem with the silicon and COT trackers to

establish muon tracks from which the transverse momentumpT is gauged by the track curvature.

Since this analysis focuses on a signal with a leptonic signature, the detection of muon (along with

electrons) is critical to finding, excluding, or setting limits on a signal. Also, we shall see in chapter

9 that distinguishing muons from electrons will be a useful tool in using a neural net (see chapter

7) to distinguish signal from particular backgrounds.

Chambers/Counters ∆η ∆φ Tmax drift # channels

CMU [0.0, 0.6] 360◦ 800 ns 2304

CMP/CSP [0.0, 0.6] 360◦ 1500 ns 1076/274

CMX/CSX [0.6, 1.0] 360◦ 1600 ns 2208/324

BMU/BSU,TSU [1.0/(1.0,1.3),1.5/(1.5,1.5)] 270◦/270◦, 360◦ 800 ns 1728/432,144

Table 4.1 Basic Summary of CDF Muon Detectors [35]
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4.5 CDF Detector Summary forV H → VWW → Trileptons

This chapter explored the basic structure and design of the CDF II detector. At the broadest

level, the CDF detector is composed of trackers, calorimeters, and the muon detectors (very similar

to the trackers). The trackers trace the paths of the chargedparticles while the calorimeters absorb

and record their energies.

This analysis searches for aV H → VWW → Trilepton+E/T signature, so understanding how

physical leptons (electrons and muons) translate into detector quantities is critical for matching the

Standard Model physics of chapter 2 to experimental observation.

The Tevatron generates collisions very quickly and most will produce interactions that are not

of interest to the experimentalist. Therefore, collider detectors have “trigger systems” that can

quickly use tracker and calorimeter information to make decisions in real time about whether or

not a particular event (pp̄ interaction) has generated products that are interesting for some reason.

Because theV H → VWW signature of interest to this analysis contains leptons andE/T , triggers

that are programmed to record specifically these events are of particular interest. We shall subse-

quently explore the idea of triggers and the particular triggers used in this analysis in chapter 5.

Once the triggers have recorded datasets thatmayhave the signature of interest, offline algorithms

perform more computationally intensive calculations to more accurately decide if a collection of

detector quantities does constitute a reconstructed lepton. Such reconstructed lepton identification

will be explored in more detail in chapter 6. Although jet identification will be useful for distin-

guishing signal from backgrounds (ZH tends to have∼ 2 jets while it’s background tend to have

0 jets, for example), jet-based triggers will not be an item of interest to this analysis.
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Chapter 5

Triggers, Datasets, and Event Selection

The Tevatronpp̄ collisions happens every 396 ns; or equivalently, with a frequency of 2.5 MHz.

The CDF detector cannot–and would not want to–record the products of every single collision that

occurs. Instead, it has a three level “trigger” system that can decide whether or not to record an

event using basic detector information. Ultimately, CDF iscapable of recording at a rate only

up to 100 Hz, so the trigger system is designed to filter the events to those of interest for current

analyses. This is done with hardware systems at level 1 and 2,then a computer farm at level 3.

Each particular “trigger” refers to a collection of decisions at all three levels.

5.1 Level 1

The level 1 trigger has∼ 5.5 µs to make a decision and a maximum accept rate of∼ 20 kHz.

This hardware system is composed of three parallel processing streams. One stream finds calorime-

ter based objects (L1CAL), one looks for primitive muon signals (MUON PRIM-L1MUON), and

the last finds tracks in the COT with the “eXtremely Fast Tracker” (XFT). Up to 64 level 1 trig-

gers can be formed from the objects in these streams using simple boolean logic (AND & OR

operators). [20]

5.2 Level 2

After a level 1 acceptance, the information of an event proceeds to level 2 for a more detailed

decision. The level 2 trigger has∼ 20 µs to make a decision and a maximum accept rate of∼ 300

kHz. There are four buffers for processing an event coming from level 1, when a particular one of
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these buffers is busy processing an event it is not availablefor futher use. When all four buffers

are in use, further events coming from level 1 are lost. The time that level 2 is busy processing and

incapable of accepting more events from level 1 is denoted as“deadtime.”

Level 2 is capable of using silicon, shower max, and calorimeter information in addition to the

level 1 information to perform further reconstruction of anevent. Once the event data is loaded

into the level 2 processors, a decision can be made about whether the event satisfies any of the level

2 triggers. [20]

5.3 Level 3

The level 3 trigger has a maximum accept rate of∼ 20 kHz. It is divided between an event

builder that stores raw detector data and a linux PC farm thatmakes a decision on whether to store

an event using higher level event objects. Level 3 is designed to make a decision on an event using

data that approximates full reconstruction.

5.4 Trigger Paths (“Datasets”) of theH → WW Group

“Trigger” tends to be a bit of an overloaded term; it may refercolloquially to a variety of ob-

jects. Any particular criteria within any of the three levels are often denoted as triggers, collections

of criteria within one of the three levels are denoted as “LX triggers” (X= 1, 2, 3), as well as sets

of criteria from all three levels. For the purposes of this disseratation, “trigger bits” will refer to

particular criteria that exist within any one of the three “trigger levels” just discussed. There will

be “LX triggers” (X= 1, 2, 3) for collective decision at a particular level. “Trigger paths” will be

the broadest categories of collections of trigger bits thatare chosen by analyses interested in data

with particular features. For instance, theH → WW group is interested in leptonic decays from

the weak vector bosons, so it chooses to use data from “trigger paths” that record highpT lepton

events during online operations.

The following are the triggers paths, or “datasets,” used for the CDF high mass Higgs boson

group and this analysis. Trigger design may evolve over time, so note that these trigger paths refer
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to their incarnations in trigger table PHYSICS5 04 v-3. This trigger table can be referenced for a

more detailed breakdown of the trigger bits within each trigger level. [11]

5.4.1 ELECTRON CENTRAL 18

The ELECTRONCENTRAL 18 trigger path is designed to select data with highpT electrons

absorbed by the central calorimeter.

• Level 1 (L1 CEM8 PT8 v-5): This trigger requires a cluster of energy in the central EM

calorimeter with at least 8 GeV, the ratio ofEHad/EEM < 0.125 to distinguish the EM energy

deposit from charged hadrons that may deposit some of its energy in the EM calorimeter,

and an XFT track withpT > 8.34.

• Level 2 (L2 CEM18 PT8 v-1): Additional requirements of an EM cluster with at least18

GeV and|η| < 1.317 are imposed here.

• Level 3 (L3 ELECTRONCENTRAL 18 v-6):

- Lshr < 0.4, a variable that compares lateral shower profile in towers next to the seed

tower to some expected profile.

- ∆z between the COT track and the central EM calorimeter shower to match within 8

cm.

- a COT track withpT at least 9 GeV

5.4.2 MUON CMUP18

The MUON CMUP18 trigger path is designed to identify highpT muons with tracks in both

the CMU and CMP muon detectors.

• Level 1 (L1 CMUP6 PT4 v-2): This trigger requires an XFT track withpT > 4.09 GeV and

fiducial to a CMU stub withpt > 6 GeV, and a CMP stub.

• Level 2 (L2 CMUP6 PT153DMATCH v-1): This trigger tightens the XFT criteria by re-

quiring a four layer track withpT > 14.77 GeV.
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• Level 3 (L3 MUON CMUP 18 v-3 ): This trigger raises thepT cut to 18 GeV and continues

the requirement of matching the track to stubs in the CMU and CMP.

5.4.3 MUON CMX18

The MUON CMX18 trigger path is designed to identify highpT muons with tracks that lead

to the CMX muon detector.

• Level 1 (L1 CMX6 PT8 CSX v-2): This trigger requires an XFT track withpT > 8.34 GeV

and fiducial to a CMX stub withpT > 6 GeV, as well a a hit in the CSX scintillator.

• Level 2 (L2 CMX6 PT15 3DMATCH HTDC v-1): This trigger tightens the XFT criteria

by requiring a four layer track withpT > 14.77 GeV.

• Level 3 (L3 MUON CMX18 v-2): This trigger raises thepT cut to 18 GeV and continues

the requirement of of matching the track to a CMX stub.

5.4.4 MET PEM

The leptonic decays studied by theH →WW group, and especially the associated production

leptonic decay ofWH →WWW → lνlνlν, also tend to exhibit high values of missing transverse

energy (E/T ). So we are also interested in the dataset pertaining to the MET PEM trigger path that is

designed to accept events with energy clusters in the plug electomagnetic calorimeter in association

with E/T . Note that this online version ofE/T–denoted here asE/T
raw– simply uses the sum of

transverse energies over the calorimeter towers and does not employ the muon or jet corrections

described later in chapter 6.

• Level 1 (L1 EM8 & MET15 v-11): At this level, the trigger requires either a central or plug

EM cluster withET > 8 GeV, withEHad/EEM < 0.125 for a central cluster andEHad/EEM <

0.0625 for a plug cluster. The L1MET15 trigger bit is also employed for aE/T
raw > 15 GeV

cut.



50

• Level 2 (L2 PEM20MET15 v-1): This trigger continues to require aE/T
raw > 15 GeV cut,

requires a plug EM object withET > 20 GeV, and1.1 < |η| < 3.6.

• Level 3 (L3 PEM20 MET15 v-8): This level imposes a plug calorimeter requirement of 3

towers withET > 20 GeV,EHad/EEM < 0.125 for the plug cluster, and aE/T
raw > 15 GeV

cut again.

5.4.5 MUON CMP18 PHI GAP

This trigger path has been working properly only since period 21 data-taking [14]. The MUONCMP18 PHI

trigger path is designed to account for gaps inφ coverage between the calorimeter wedges. This

puts a 2.25 degree gap in the CMUφ coverage every 15 degrees. The basic idea of this trigger

is to require tracks that point towards a gap to be coincidence with a CMP stub and a CSP hit.

Previous incarnations of this trigger had problems keepingthe rate under reasonable levels at high

instantaneous luminosities, so it does employ a dynamic prescale up to a factor of 60. [17]

• Level 1 (L1 CMP3 PT15 3D PHIGAP DPSv-2): This trigger requires an XFT track with

pT > 14.77 GeV.

• Level 2 (L2 CMP3 PT15 3D PHIGAP CSPv-1): This level goes on to require a CSP hit.

• Level 3 (L3 MUON CMP18 v-1): At level 3, this trigger requires

- cmpDx=20

- pT > 18 GeV

- CMP stub
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Chapter 6

High pT Object Identification

Datasets from any given trigger path begin as little more than collections of detector signals:

hits in the silicon and COT, showers in the calorimeters withsome measured energy, etc. Trans-

lating these signals into objects the experimentalist is looking for (leptons, jets, photons, etc.) is

a formidible and detailed task. This chapter will first discuss the details of lepton identification

(section 6.1), jet identification (section 6.2), and how missing energy is computed (section 6.3).

Then other important details related to the shortcomings ofobject identification like “fake leptons”

(section 6.4), as well as efficiencies and scale factors related to lepton ID (sections 6.5 and 6.6)

will be discussed.

6.1 Lepton Identification

This analysis is mostly interested in the identification of electrons and muons, as well as miss-

ing energy (E/T ). To determine what pattern of detector information shouldbe called “electrons”

and “muons,” hits in the silicon and COT detectors must undergo essentially a high brow game of

connect-the-dots to form “tracks.” Such tracks must then befiducial to energy deposits in the EM

calorimeter to be identified as electrons, or fiducial to short tracks (“stubs”) in one of the muons

detectors to be identified as muons.

This analysis, along with the rest of theH → WW group, constructs from the trigger paths

listed in section 5.4 these lepton categories:

• Electrons: Likelihood-based electrons, phoenix electrons (see section 6.1.2)
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• Muons: CMUP, CMP, CMU, CMX, CMXMsKs, BMU, CMIOCES, CMIOPES (see section

6.1.3)

• Lepton of unspecified flavor: CrkTrk (“crack track”)

All of these categories will require some collection of several cuts on detector quantities such as

[14]:

• EHAD/EEM – the ratio of the hadronic calorimeter energy to the electromagnetic calorimeter

energy associated with the candidate

• E/P – the ratio of the EM cluster transverse energy to the COT track transverse momentum

• Lshr – the lateral shower profile in the transverse plane to the electron direction

Lshr = 0.14

∑

i

(Mi − Pi)

√

(0.14
√
EEM)2 +

∑

i

(∆Pi)2
(6.1)

wherei is the sum over adjacent towers,Mi is the measured energy, andPi is the predicted

energy in theith tower [36].

• CalIso – The energyET in a cone of radius∆R =
√

(∆η)2 + (∆φ)2 ≤ 0.4 around the

electron cluster excluding the electron cluster divided bythe energy in the electron cluster:

CalIso =
Econe

T − Eelectron
T

Eelectron
T

• TrkIso – the same variable as aboveCalIso but measured using tracks instead of calorime-

ter

• Q×∆xCES – The distance in ther-φ plane between the extrapolated, COT beam constrained

track and the best matching CES cluster, times the chargeQ of the track.

• ∆zCES – The distance in ther-z plane between the extrapolated, COT beam constrained

track and the best matching CES cluster.
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• NCotHitsAx – number of COT hits on axial layers belonging to track associated to the

candidate electron

• NCotHitsSt – number of COT hits on stereo layers belonging to track associated to the

candidate electron

• χ2
COT – χ2 associated with the COT hits belonging to track

• NSvxHits – number of SVX hits belonging to track associated to the candidate electron

• TrackpT – Transverse momentum measured from the charged particle’strack

• Trackz0 – Position along the longitudinal direction of the beamline.

• Axial and Stereo Superlayer – The number of axial and stereo superlayers in the COT having

at least 5 hits associated to the track in question.

• CES∆X – The difference in ther − φ plane between the best CES match and the COT

beam-constrained track extrapolation to the CES.

• PEM 3x3 Fit – Aχ2 fit to electron test beam data of nine Plug EM towers.

• PES 5x9 U/V – The ratio of the central five tower energy to the total nine tower energy.

• χ2 – This chi squared compares the fitted track to the actual hitsin the trackers.

• Curvature Significance – The measured track curvature divided by the curvature error.

Section 6.1.1 will briefly discuss track formation from hitsin the trackers, then sections 6.1.2,

6.1.3, and 6.1.4 will discuss how such tracks are combined with other detector information to be

counted as lepton objects.

6.1.1 Track Formation

Recall from section 4.2 that the silicon and COT trackers aresurrounded by a 1.4 T field along

theẑ direction. This field causes charged particles to follow thepath of a helix with its axis parallel
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to the magnetic field, so the connect-the-dots game is a matter of constructing an algorithm that

will recognize a collection of silicon and COT hits that follow the path of a helix that leads near

thepp̄ interaction on one end and to either a calorimeter energy deposit or muon stub on the other

end.

The COT forms segments with hits in the axial layers, then links these segments together into

tracks. To form these tracks, the algorithm begins with segments in the outermost superlayers, then

uses the curvature of the segment and the beamline location to search for possible other segments

that could form a helix to the primary vertex. Stereo segments are then also linked to form a three

dimensional track [26].

Once a COT track is formed, the silicon tracking uses this track as a “seed,” essentially a

starting point, and then uses an “outside-in” tracking algorithm. This will start with the outermost

layer and work inwards searching for hits that form the best possible helix back to the primary

vertex [37].

Forward electrons may need a different strategy if their pseudorapidity is to large to make

suitable COT seed tracks for the silicon. In this case, seed tracks are formed from “CdfEmOb-

ject” objects–energy deposits in the Plug EM calorimeter–which then drives the outside-in silicon

pattern recognition [24].

6.1.2 Electron ID

Central electrons (|η| < 1.0) with high pT are expected to traverse the silicon and COT de-

tectors, leaving behind a track. Then they enter the EM calorimeter where they will cause an

electromagnetic shower and deposit their energy. Until recently, these electrons has to pass a set

of criteria called “tight central electron.” These criteria were a set of hard cuts, so if an object that

looked very electron-like still failed even one cut it wouldnot pass selection. This category has

since been replaced by the “likelihood-based electron” (LBE) category that creates a single func-

tion out of mostly the same set of criteria, but then imposed just a single cut on the end value of

that function. LBE criteria are [14]

• having a track fiducial to the CEM
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• Trackz0 < 60 cm

• the electron candidate object is not a photon conversion

• EHAD/EEM < 0.125, which satisfies trigger requirements and cuts out charged hadronic

objects.

• CalIso< 0.3, calorimeter isolation requirement to cut out fakeable objects

• pT (track) > 10 GeV (pT (track) > 5 GeV if ET < 20 GeV)

• Likelihood cut:L > 0.90

Given these, the values used in the likelihood function are:EHAD/EEM , E/P , Lshr, CalIso,

TrkIso,Q×∆xCES , ∆zCES,NCotHitsAx,NCotHitsSt, χ2
COT –χ2, andNSvxHits. Finally,

the likelihood function itself is:

L(~x) = Lsig

Lsig + Lbckg

=

∏N

i=1 P
sig
i (xi)

∏N
i=1 P

sig
i (xi) +

∏N
i=1 P

bckg
i (xi)

(6.2)

Electrons in the pseudorapidity region1.2 < |η| < 2.0 would not be found by the LBE cate-

gory because they are not fiducial to the CEM. They are insteadfound by the “phoenix” tracking

algorithm which the more traditional path of making a collection of cuts (see table 6.1).

6.1.3 Muon ID

The muon categories are denoted by which muon detector a track is found in. Muons are

“minimum ionizing particles,” meaning that they deposit only a small fraction of their energy in

the calorimeters and can traverse through the entire CDF detector. All muon object candidates must

pass a basic set of cuts (see table 6.2 ), then have a that is fiducial to one of the muon detectors.

• CMUP: CMUP muons are required to have stubs in both the CMP andCMU detectors,

covering a pseudorapidity range of|η| < 0.68.

• CMU: High pT tracks with a CMU stub, but not a CMP stub
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• CMP: HighpT tracks with a CMP stub, but not a CMU stub

• CMX: High pT tracks with a CMX stub, covering a pseudorapidity range of0.6 < |η| < 1.0.

• BMU: High pT track with a BMU stub, covering a pseudorapidity range of1.0 < |η| < 1.5

• CMIOCES: A minimum ionizing track that does not register as CMUP, CMU, CMP, or

CMX, but is fiducial to the central calorimeter

• CMIOPES: A minimum ionizing track that does not register as BMU, but is fiducial to the

plug calorimeter.

• CMXMsKs: A highpT track that points to either the miniskirt or keystone detectors.

Two categories of muons used do not actually use muons stubs.CMIOCES and CMIOPES

muons are tracks that do not have muon stubs, but rather rely on a muon’s minimum ionizing

nature in a calorimeter. A track whose curvature implies high pT , but does not deposit energy

in either the EM or hadronic calorimeters strongly tends to be a muon since muons are the only

particles produced that have this signature and do not tend to decay before traversing the entire CDF

detector. See tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 forspecific cuts on each muon category.1

6.1.4 Unspecified Track ID

The last category of leptons considered in this analysis aretracks that are considered sufficiently

lepton-like, but their flavor cannot be specified. This “CrkTrk” category is defined to cover tracks

that specifically point to cracks in calorimeter acceptance

1Based on the CDFH → WW group’s Dibosonv17 framework
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Forward Electrons (PHX)

Region Plug EM Cal.

ηPES 1.2 < |η| < 2.0

EHAD/EEM < 0.05

PEM 3x3 Fit true

χ2
PES 10

PES 5x9 U ≥ 0.65

PES 5x9 V ≥ 0.65

Isolation/ET ≤ 0.1

∆R(PES, PEM) ≤ 3.0

Track Matched true

# of Silicon Hits ≥ 3

Track |z0| ≤ 60 cm

Table 6.1 Phoenix (PHX) electron definition

Muon Base Cuts

pT > 10 GeV

EEM 2+max(0, (p− 100) · 0.0115)
EHAD 6+max(0, (p− 100) · 0.028)

Isolation/pT ≤ 0.1

# Axial SL ≥ 3

# Stereo SL ≥ 2

Track |z0| ≤ 60 cm

Track |d0| 0.2 cm (< 0.02 cm with silicon)

χ2/deg. of freedom < 4.0 (< 3.0 if Run #> 186598)

Table 6.2 Base muon identification criteria for all categories
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CMUP Muons

CMU Fiducial xfid < 0, zfid < 0 cm

CMP Fiducial xfid < 0, zfid < −3 cm

∆XCMU 7 cm

∆XCMP max(6, 150/pT ) cm

CMU Stub true

CMP Stub true

Table 6.3 Cuts for CMUP muons beyond the base muon cuts

CMP Muons

CMU Fiducial xfid < 0, zfid < 0 cm

CMP Fiducial xfid < 0, zfid < −3 cm

∆XCMP max(6, 150/pT ) cm

Run Numbers ≥ 229764

CMP Stub true

Table 6.4 Cuts for CMP muons beyond the base muon cuts

CMU Muons

CMU Fiducial xfid < 0, zfid < 0 cm

CMP Fiducial xfid < 0, zfid < −3 cm

CMX Fiducial xfid < 0, zfid < −3 cm

∆XCMU 7 cm

CMU Stub true

Table 6.5 Cuts for CMU muons beyond the base muon cuts. [Note:the code comments state
“Make them starting from run 270062” but the code itself has “if (RunNumber< 999999)

BitSet.SetFalse(kBitIsFiducial);” indicating that CMU may not be in use.]
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CMX Muons

CMX Fiducial xfid < 0, zfid < −3 cm

Fiducial to CMX Arches true

Fiducial to CMX Miniskirt false

Fiducial to CMX Keystone false

∆XCMX max(6, 125/pT ) cm

COT Exit Radius > 140 cm

CMX Stub true

Table 6.6 Cuts for CMX muons beyond the base muon cuts

BMU Muons

BMU Fiducial true

BMU Stub true

PES Fiducial true

NSvxHits ≥ 3

Cal. Energy > 0.1 GeV

COT Hit Fraction > 0.6

Curvature Significance > 12

Run Number ≥ 162312

Table 6.7 Cuts for BMU muons beyond the base muon cuts
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CMIOCES Muons

Not CMUP or CMX

Cal. Energy > 0.1 GeV

NCotStSeg ≥ 3

Fiduciality CES

χ2/deg. of freedom < 3.0

Table 6.8 Cuts for CMIOCES muons beyond the base muon cuts

CMIOPES Muons

Not BMU

Cal. Energy > 0.1 GeV

Fiduciality PES

COT Hit Fraction > 0.6

Curvature Significance > 12

Table 6.9 Cuts for CMIOPES muons beyond the base muon cuts

CrkTrk Muons

Not CMUP or CMX

# Axial SL ≥ 3

# Stereo SL ≥ 3

Cal. Isolation ≤ 0.1 using CDF Muon or≤ 0.1 using EM cluster

Fiduciality Not CES or PES fiducial

Cal. Energy > 0.1 GeV

Fiduciality PES

χ2/deg. of freedom < 3.0

Table 6.10 Cuts for CrkTrk muons beyond the base muon cuts



61

6.2 Jet ID

Quarks are known to exist only in groups of two (“mesons”) or three (“hadrons”). Thepp̄

interactions have high enough energy to tear the quarks of the proton and antiproton out of their

hadronic configurations. When this happens, they will subsequently recombine or even create pairs

out of the vacuum. This typically results in a spray of particles with a common general direction

which are denoted “jets” in particle physics. As such, jets tend to deposit energy in both the EM

and hadronic calorimeters assiciated with multiple tracks.

In the analysis, jets are defined as calorimeter cluster within ∆R < 0.4 and at leastET > 15

GeV. While jets are not a part of the signal this analysis select upon, the number of jets in a

particular event will be an important variable for discriminating theWH andZH signals from

their backgrounds.

6.3 Missing Transverse Energy (E/T )

Thepp̄ beam is defined as thêz-direction in CDF coordinates. Hence, since the beginning state

of thepp̄ interaction has no momentum or energy directed in the plane transverse to the beamline,

the energies of products after thepp̄ interaction should sum to zero. Particles that do not interact

with the detector do not have their energies included in the vector sum, so the result is “missing

transverse energy” (E/T ).

Neutrinos are the only known particles that will not interact with the detector and are inherent

to the leptonic decays ofW weak vector bosons. Therefore,E/T is an important quantity in the

signatures ofWH →WWW andZH → ZWW signals of theH → WW group.

There are, however, some caveats that must be accounted for first. The raw missing transverse

energy is just the sum over the calorimeter towers.

~E/T
raw

= −
∑

i

~Ei
T (6.3)

where ~Ei
T is the energy magnitude deposited in theith calorimeter tower with a unit vector pointing

from the primary vertex to the center of the calorimeter tower artificially attached to make it a
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vector quantity, then the transverse component is taken. Itwas discussed that muons are minimum

ionizing particles, so they do not deposit much of their energy in the calorimeters. This also counts

as missing energy in~E/T
raw

so theE/T is corrected by having the muon’s energy added back, minus

the small amount of energy the muon did deposit. The same goesfor CrkTrk leptons which do not

deposit energy in the calorimeters by definition. Lastly, jets undergo some energy corrections in

reconstruction which then affects the vector energy sum.

6.4 Fake Leptons

Some small, but significant, portion of jets will produce a signature that passes one of the lepton

definitions. These objects are denoted “fake leptons” or just “fakes.” Note that these are distinct

from “photon converted leptons,” which are photons that interact with the detector apparatus to

become an electron-positron pair and then register as an electron.

Modeling of fakes has been unreliable, so this background isinstead estimated from “jet sam-

ples” of data. Four such jet samples are used, based on trigger paths requiring a leading jetET

of at least 20 GeV, 50 GeV, 70 GeV, and 100 GeV. In these data samples, the number of jet-like

objects that pass a very loose selection of lepton cuts are counted. These loose lepton selections are

called “denominator objects,” and various denominator objects are defined for the different lepton

categories. These are considered to be the collection of jet-objects that have any non-negligible

chance at all of passing a full lepton definition. The “fake rate” is then the ratio of these denomina-

tor objects that actually do pass a full lepton definition to the full set that pass just a denominator

definition. Note that the actually number of isolated, fullyrecognized leptons (i.e. “real” leptons)

must be subtracted in the numerator and number of isolated lepton-objects passing the denomina-

tor definition must be subtracted from the denominator. Hence, for a generic lepton categoryi, the

fake rate is [14]

fi =

NI(full leptons)−
∑

j∈{EWK}
Nij(full leptons)

NI(denom. objects)−
∑

j∈{EWK}
Nij(denom. objects)

(6.4)
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The four data samples provide four independent estimates ofthe fake probability, the average

of which are use as the fake probability in this analysis. Thesystematic uncertainty on the rate

beyond the statistical error is estimated by adding a parameterα as
√

stat.+ α large enough so that

all four samples agree to within one standard deviation.
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Figure 6.1 Fake rates for electrons. PHX and LBE have no trackisolation requirement. TCE is
include for comparison. [16]
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Figure 6.2 Fake rates for muons. [16]
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6.5 Lepton Efficiencies

Monte carlo simulated backgrounds and signals must be appropriately calibrated to the data

to be accurate. Lepton efficiencies are measured with Drell-Yan (Z → ll) events in MC and data

because of the relatively large sample size, then compared.Such corrections are then applied to all

MC processes.

Lepton efficiency is defined as

ǫID =
NTT

NTL

(6.5)

whereNTT is the count of tight-tight lepton pairs andNTL is the count of tight-loose pairs ({NTT} ⊂
{NTL}) [31].

6.6 Lepton Scale Factors

The “lepton scale factor” is the ratio of lepton identification efficiencies in data to the monte

carlo. This factor is used later in determining how to weighteach event in an MC process. It is

recalculated for different periods in data taking.

s =
ǫdata

ID

ǫMC
ID

(6.6)
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Lepton Category Period 0 Period 1-4 Period 5-7 Period 8-10

CMUP 0.973± 0.012 0.938± 0.009 0.932± 0.013 0.955± 0.009

CMU 0.000± 1.000 0.000± 0.500 0.000± 0.577 0.000± 0.577

CMP 0.000± 1.000 0.000± 0.500 0.000± 0.577 0.965± 0.032

CMX 1.027± 0.016 1.020± 0.017 1.026± 0.019 1.007± 0.014

CMXMsKs 0.000± 1.000 0.000± 0.500 0.000± 0.577 0.930± 0.036

BMU 1.127± 0.032 1.107± 0.025 1.076± 0.032 1.099± 0.021

CMIOCES 1.049± 0.019 1.060± 0.015 1.085± 0.018 1.086± 0.014

CMIOPES 1.000± 0.000 1.005± 0.020 1.029± 0.025 0.980± 0.018

CrkTrk µ 0.958± 0.015 0.978± 0.012 0.976± 0.015 0.973± 0.012

Table 6.11 Muon scale factors in Dibosonv17 data [14].

Lepton Category Period 11-12 Period 13 Period 14-25

CMUP 0.924± 0.011 0.937± 0.011 0.884± 0.004

CMU 0.000± 0.707 0.000± 1.000 0.000± 1.000

CMP 0.893± 0.022 0.987± 0.022 0.876± 0.009

CMX 0.981± 0.018 0.986± 0.020 0.978± 0.008

CMXMsKs 0.935± 0.032 0.890± 0.033 0.912± 0.012

BMU 1.064± 0.028 1.142± 0.037 1.100± 0.013

CMIOCES 1.204± 0.019 1.186± 0.022 1.196± 0.011

CMIOPES 0.955± 0.023 0.998± 0.037 0.970± 0.010

CrkTrk µ 0.990± 0.020 0.952± 0.021 0.959± 0.008

Table 6.12 Muon scale factors in Dibosonv17 data [14].
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Lepton Category Period 0 Period 1-4 Period 5-7 Period 8-10

LBE(L > 0.9) 1.012± 0.004 1.001± 0.003 0.996± 0.004 0.992± 0.003

PHXTrk 0.998± 0.005 1.007± 0.004 1.018± 0.005 1.001± 0.004

PHXPEM 0.951± 0.006 0.953± 0.005 0.944± 0.006 0.931± 0.004

PEM 0.943± 0.011 0.916± 0.010 0.911± 0.015 0.875± 0.010

CrkTrk e 0.950± 0.016 0.989± 0.016 0.957± 0.019 0.948± 0.014

PESTrk 0.913± 0.013 0.949± 0.013 0.974± 0.017 0.947± 0.012

Table 6.13 Electron scale factors in Dibosonv17 data [14].

Lepton Category Period 11-12 Period 13 Period 14-25

LBE(L > 0.9) 0.993± 0.004 0.994± 0.005 0.991± 0.001

PHXTrk 0.999± 0.004 1.004± 0.057 1.026± 0.002

PHXPEM 0.939± 0.005 0.936± 0.007 0.911± 0.002

PEM 0.870± 0.013 0.871± 0.013 0.829± 0.005

CrkTrk e 1.002± 0.021 0.966± 0.021 0.964± 0.007

PESTrk 0.966± 0.015 0.922± 0.021 0.907± 0.006

Table 6.14 Electron scale factors in Dibosonv17 data [14].
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Chapter 7

Computations with Artificial Neural Networks

This analysis uses the NeuroBayes artificial neural networkto discriminate the Higgs boson

signal from its backgrounds. After all analysis cuts are made and we have a final event count

for the monte carlo signals and backgrounds, as well as the experimental data, variables showing

separation in the distributions of signals and backgroundscan be used as a collection of input

variables for a neural network. This neural network then uses theNin input variables to compute

a single one-dimensional distribution–denoted the “neural network score” in this dissertation–for

each signal and background. In the end, the distributions inthe neural network score should show

much better separation between signals and backgrounds than any one of the input variables since

the information of distribution separation of all the inputvariables is included in the final neural

net score.

The neural network itself is an information processing system that is characteristically nonlin-

ear, nonalgorithmic, and parallel. The NeuroBayes versionof a neural net begins with a set ofNin

inputs{x} of any value and a single outputznet ∈ (−1, 1). The outputznet is computed from some

function of theNin input variables, as well as weights and thresholds that may be associated with

the variables [23]:

znet = Fnet({x}, {w}, {T}) (7.1)

The most basic structure of a neural net is called a “neurode”(see figure 7.1), which has some

N input variables, their weights, and some single threshold value. From these, the neurode outputs

a single valuea.
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Figure 7.1 Neural Network “neurode”

Next, suppose we group togetherN2 neurodes, each taking as input a set ofN1 variables. This

structure is denoted a “network node” (see figure 7.2). WithN2 neurodes composing it, the network

node has then a set{ai}, i ∈ {1, . . . , N2} of outputs values–one output value for each neurode.

Finally, consider a network node withNin input variables andN1 output values. Then use these

N1 values as the input variables for another network node, which will output someN2 values.

Such a succession of network nodes using the output of the previous network node as the input for

the next is called a “neural network” (see figure ????). The first network node is called the “first

hidden layer,” theith network node is the “ith hidden layer,” until the last network node–the “output

layer”–is reached and outputs the single score valueznet.

Having a neural network and having it do something useful aretwo distinct tasks. The tricky

part is finding a network that yieldsznet ≃ −1 for backgrounds andznet ≃ +1 for signals. This

requires a properly “trained” neural network. To do this, an“error function” [23]–or sometimes

called “quadratic loss function”– (χ2
net) is defined on theNin input variables so that small values

for signals and a comparatively larger values for backgrounds are returned. NeuroBayes uses [22]:

χ2
net =

∑

j

wj

1

2

∑

i

(Tji − zji)
2 (7.2)

wherej runs over the outputs of a network node,i runs over the event list, andTji is the target

value for the node.

By doing this, we have established anNin-dimensional space whose minimum characterizes a

signal-like signature and whose maximum characterizes a background-like signature. “Training”
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Figure 7.2 Neural Network “network node”

the neural net is synonomous with locating the minima ofχ2
net as closely as possible(dχ

2
net

dz
= 0).

Note that one of the great dangers of training a neural net is having a quadradic loss function get

stuck in alocal minima inadvertantly. Though, the technical details of howthe minimization is

performed are designed with this in mind. Once this is done, the trained error function is used in

the neural network to yieldznet ≃ −1 for background-like events andznet ≃ +1 for signal-like

events.

The usage and results of the neural network method in this particular analysis is expounded

in section 9.3, where the inputs variables and neural network scores for the ‘V H → VWW →
trilepton’ analysis is examined in detail.
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Chapter 8

Statistics of Confidence Level Limits In the Search for New Physics

8.1 Poisson Statistics and Physical Processes

It is not presumptive to state that this analysis does not constitute a discovery of the Higgs

boson. Rather, this analysis sets and updates an experimental limit excluding the Higgs boson of a

particular mass range with a certain confidence level. As such, this chapter explains the method of

how such a statistical exclusion is computed in general, while the experimental exclusion set for

this analysis in particular is given in chapter 9.6.

Let’s begin by explicitly identifying some basic assumptions inherent to particle interactions.

These assumptions provide the logical foundation upon which the rest of the statistical aspects of

the analysis are based:

1. The probability for a particular outcome of interest occuring more than once in a single event

is negligible. This analysis searches for a higgs boson in the trilepton signature. The cross

sections of Higgs production mechanisms explored–as well as all of the backgrounds–is so

small that we can assume that none of the processes occure more than once in a single event.

2. Eachpp̄ interaction is an independent event.

3. The occurence of any particular outcome of interest (bothbackgrounds and signals) is inde-

pendent of other occurences. In other words, a process occuring or not occuring in one event

does not affect the probability that it will occur in anotherevent.

This set of assumptions implies the processes studied will follow a Poisson distribution [28].
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Definition 8.1 The Poisson distributionis the continuous distribution attained from the discrete

binomial distribution when taking the limit of an infinite number of events (n→ ∞). Letn be the

number of events,p be the probability of an occurence of interest happening,k is the number of

events inwhich the occurence of interest is observed, andλ ≡ np remain constant (this becomes

the expected value). Then thePoisson distributionis [29]:

lim
n→∞




n

k



 pk(1− p)n−k =
e−λλk

k!
, ∀ k ∈ {0

⋃

Z}. (8.1)

8.2 Gaussian Statistics and Systematic Errors

In any kind of experimental measurement, infinite precisionis impossible. Knowing what we

know always must include knowing what we don’t know. Systematic errors of measurement must

be set in order to not overstate the significance of a measurement.

Collider physics experiments inherently contain a plethora of systematic uncertainties. There

are uncertainties of the beam intensity, acceptances, theoretical cross sections of the processes, etc.

(see section 9.5 for the full list of systematic uncertainties inherent to this analysis). In statistics,

these are sometimes called “nuissance parameters,” but this analysis will use the term “systematic

uncertainty.”

Suppose, for the sake of argument, a particular quantity is to be measured and the measurement

is performed many times on the exact same quantity, with the measurement performed in the

same manner each time. Because infinite precision of measurement is impossible, there must be

some distribution formed about the measurable value. The “Gaussian distribution” (or “Normal

distribution” to statisticians) describes data that is clustered about some mean, so systematic errors

in particle physics are assumed to have a Gaussian-like distribution.

Definition 8.2 [30] A random variable isnormally distributed–or follows aGaussian distribution–

with meanµ and varianceσ2 if

f(y) =
1

σ
√
2π
e−

1
2(

y−µ
σ )

2

(8.2)
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8.3 Likelihood and Confidence Level Computation

Without any a priori expectations about the outcome of the analysis, it either must compute

the significance of a signal observed or set an exclusion if one is not observed. In either case, the

data is compared to two hypotheses: one model using background processes only and one that

include both the background and signal estimate. Confidencelevel computations in this analysis

are performed by a program calledMCLimit–written specifically for CDF analyses.

The benchmark for excluding a signal is set at95% confidence level. This means that a95%

confidence level exclusion should be obtained no more than5% of the time if a real signal is

present. If the discovery of a signal is possible, then data surplus over background must be distin-

guished as being a signal rather than an upward statistical fluctuation of the background hypothesis.

Therefore, the probability of an upward fluctuation of the background must be computed. A signal

is “discovered” if the probability of an upward fluctuation of the background is no more than the

integrated probability of the5σ tails of the Gaussian distribution.

Let’s proceeed by defining a “likelihood” and ”likelihood rato,” then move on to their use in

computing “confidence levels.” The starting point is the neural net score described in chapter 7.

With the background and signal distributions separated as much as possible, a stronger confidence

level can be computed in the end. The neural net score is divided into some number of bins; each

bin will have it’s own Poisson probability term in the likelihood.

Definition 8.3 The likelihood functionL is a product of Poisson probabilities for each bin of the

neural net score, in this analysis. Further, there is a separate product of Gaussian distributions for

each systematic error.

L =

(
∏

i

µni

i e
−µi

ni!

)

·
∏

c

e
S2
c
2 (8.3)

whereµi is the total expectation in thei-th bin andni is the number of data events in thei-th bin.

µi is given by

µi =
∑

k

αk

[
∏

c

(1 + f c
kSc)

]

(NExp
k )i (8.4)

Heref c
k is the fractional uncertainty associated with the systematic Sc and processk.
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Now, µi is the total expectation of thei-th bin, but the expectation can differ depending on which

hypothesis we use: the background-only hypothesis or the background-plus-signal hypothesis.

Both shall be employed in the likelihood ratio.

Definition 8.4 A test statisticis a valueX which discriminates signal-like outcomes from background-

like outcomes. For the purposes of this analysis, the likelihood ratio is chosen to be the test statistic

[27].

Definition 8.5 Ignoring systematic errors for now, thelikelihood ratiois the ratio of the likelihood

function for the background-plus-signal hypothesis to thelikelihood function for the background-

only hypothesis.

X =

n∏

i=1

e−(si+bi)(si+bi)di

di!

e−bib
di
i

di!

(8.5)

wheresi is the signal expectation in thei-th bin of the neural net score,bi is the background

expectation, anddi is the number of events observed in data.

Definition 8.6 Theconfidence levelfor exclusion of the signal-plus-background hypothesis isthe

probability of the test statisticX being less than or equal to the test statistic of the observeddata

Xobs..

CLs+b = Ps+b(X ≤ Xobs.) (8.6)

Ps+b(X ≤ Xobs.) =
∑

X({d′i})≤X({di})

n∏

i=1

e−(si+bi)(si + bi)
d′i

d′i!
(8.7)

whereX({di}) is computed for the observed candidates for each channel{di} and the sum is over

final outcomes{d′i} with test statistic value less than or equal to the observed one [27].

An exclusion of at least95% confidence level is achieved ifCLs+b ≤ 0.05. The confidence

level reported by this analysis will be normalized to the Standard Model background hypothesis

CL/CLσSM. Hence,CL/CLσSM = 1 means that the background-plus-signal hypothesis has been

excluded at95% confidence level. This is then compared to the same confidencelevel normalized



76

to Standard Model computed with pseudoexperiments assuming the background hypothesis and

normalized to the amount of data available to date. When an insufficient amount of data has been

collected to distinguish thes + b hypothesis from theb hypothesis,CL/CLσSM > 1. As more

data is collected, this value decreases. When these pseudoexperiments assuming the background

hypothesis achieveCL/CLσSM = 1, we say we have “achieved Standard Model sensitivity” at the

95% confidence level.
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Chapter 9

The High Mass Higgs Boson Analysis in the Trilepton Signature

9.1 Motivation for Trileptons

The production cross sections forWH andZH may be small relative to the gluon fusion

cross section of the currentH → WW analysis, but until now the trilepton signature has been

completely unexplored, the uniqueness of the trilepton signature keeps background low, and every

little bit counts as we push observed limits toward the standard model cross section.

Leptons decaying from aW -boson are physically detectable from an experimental point of

view if theW decays to an electron, a muon, or a tau provided that the tau goes on to decay to an

electron or muon. Given a genericW -boson, the probability of getting a lepton via any of these

decays is :1[13]

P (W → l) = P (W → e) + P (W → µ) + P (W → τ) [P (τ → e) + P (τ → µ)]

= 0.2528

The relevant cross sections are (from tables 9.2, 9.3, and see [16])

• σggH160= 0.4607 pb

• σWH160 = 0.0510 pb

• σZH160 = 0.0331 pb

1Basic decay values are from PDG Particle Physics Booklet (July 2006), Institute of Physics
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The dominant mode for the currentH → WW group analysis is gluon fusion in the two-lepton

bin, which has an expected yield of:

σggH160 · BR(H → WW ) · P (W → l)2 = 0.02653pb

By comparision, the expected yield forWH associated production in the three-lepton bin is:

σWH160 · BR(H →WW ) · P (W → l)3 = 7.425× 10−4pb

or 2.8% the yield of the dilepton analysis (formH = 160 GeV).

ZH associated production may have a smaller cross section thanWH, but given one such

event there is a higher probability of producing three leptons. In this case, theZ decays to two

leptons so we need only one of the two Higgs-W -bosons to decay leptonically and there are two

ways for this to happen:

P (W → l,W → l) = P (W → l)2 = 0.06391

P (W → l,W → had.) = P (W → l) [1− P (W → l)] = 0.1889

P (W → had.,W → l) = P (W → l) [1− P (W → l)] = 0.1889

P (W → had.,W → had.) = [1− P (W → l)]2 = 0.5583

2 So the expectedZH yield is

σZH160 · BR(H →WW ) · P (Z → ll) · 2 · P (W → l,W → had.) = 7.582× 10−4pb

or 3.0% of the currentH → WW dilepton analysis (formH = 160 GeV). Thus, based on cross

sections and branching ratios alone we pursued this trilepton analysis expecting to contribute an-

other∼ 5.7% compared to the gluon fusion process in the currentH → WW dilepton analysis.

Incidentally, one of the future improvements to this analysis is to acceptτ leptons directly.

Noting that the above prediction assumes that vector boson decays toτ ’s result in a detectable

lepton only if thatτ decays to an electron or muon, if we repeat the prediction assuming we may

accept one hadronically decaying tau into the trilepton analysis, then the5.7% becomes6.9% (for

mH = 160 GeV).
2Observe that 0.06391+0.1889+0.1889+0.5583=1.0
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9.2 Event Summary and Signatures of theWH andZH Trilepton Analyses

9.2.1 Lepton Selection

This trilepton analysis is a high mass (mH > 135 GeV) standard model higgs boson search

conducted by theH →WW group, so the lepton selection criteria of theH →WW group follow

implicitly as well. The lepton categories used are [16]:

• Electrons: LBE, PHX (TCE has been replaced with the likelihood-based electron selection)

• Muons: CMUP, CMP, CMU, CMX, CMXMsKs, BMU, CMIOCES, CMIOPES,CrkTrk

TheH → WW group also recently replaced the standard selection methodof hard cuts with a

likelihood-based selection for electrons. This new selection method is therefore also assumed in

this trilepton analysis and detailed further in [16].

The datasets used are bhel0d/0h/0i/0j/0k/0m for electrons, bhmu0d/0h/0i/0j/0k/0m for muons,

and bpel0d/0h/0i/0j/0k/0m for MET+PEM; with the followingcorresponding trigger paths:

• ELECTRONCENTRAL 18

• MUON CMUP18

• MUON CMX18

• MUON PEM

• MUON CMP18 PHI GAP

9.2.2 Trilepton Signal Regions Defined

The currentH → WW group analysis is constrained only to the study of events with exactly

two leptons, which focuses primarily on the gluon fusion Higgs boson signal because of its large

cross section relative to associated production. The trilepton analysis, however, focuses virtually

entirely on the two associated production channels becausethere are three vector bosons that allow

for decays to more than two leptons, whereas the gluon fusionand vector boson fusion signals do
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mode Period Stntuple σ × B (pb) K-factora Filter Eff

WZ 0-23 we0s6d,we0scd,we0shd3.46×0.101 1.0 0.754

we0sld,we0sod,we0sbf

we0shf

ZZ 0-23 we0s7d,we0sdd,we0sid 1.511 1.0 0.233

we0smd, we0spd,we0scf

we0sif

tt̄ 0-11 te0s2z 7.9×0.1027 1.0 1.0

Zγ 0-11 re0s33, re0s34, re0s37 14.05 1.36b 1.0

a If cross section is NLO, then K-factor is one.

b http://www-cdf.fnal.gov/tiki/tiki-index.php?page=EwkDatasets#Drell Yan Z gammaSample

Table 9.1 Monte Carlo samples used in this analysis
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MH(GeV
2) Period Stntuple σ (pb) BR (H → WW ) Filter Efficiency

110 0-23 fhgs4a,fhgs6a 0.2075 0.0441 0.6880

120 0-23 fhgs4b,fhgs6b 0.1529 0.1320 0.6978

130 0-23 fhgs4c,fhgs6c 0.1141 0.2869 0.7032

140 0-23 fhgs4d,fhgs6d 0.0860 0.4833 0.7065

150 0-23 fhgs4e,fhgs6e 0.0654 0.6817 0.7085

160 0-23 fhgs4f,fhgs6f 0.0510 0.9011 0.7108

170 0-23 fhgs4g,fhgs6g 0.0389 0.9653 0.7125

180 0-23 fhgs4h,fhgs6h 0.0306 0.9345 0.7141

190 0-23 fhgs4i,fhgs6i 0.0243 0.7761 0.7151

200 0-23 fhgs4j,fhgs6j 0.0193 0.7347 0.7165

145 0-23 fhgs4o,fhgs6o 0.0749 0.5731 0.7075

155 0-23 fhgs4p,fhgs6p 0.0572 0.8007 0.7098

165 0-23 fhgs4q,fhgs6q 0.0441 0.9566 0.7114

175 0-23 fhgs4r,fhgs6r 0.0344 0.9505 0.7130

Table 9.2 Associated Higgs production with aW boson (from CDF Note 9863).
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MH(GeV
2) Period Stntuple σ (pb) BR (H →WW ) Filter Efficiency

110 0-23 uhgs4a,uhgs6a 0.1236 0.0441 0.6930

120 0-23 uhgs4b,uhgs6b 0.0927 0.1320 0.7031

130 0-23 uhgs4c,uhgs6c 0.0705 0.2869 0.7087

140 0-23 uhgs4d,uhgs6d 0.0542 0.4833 0.7122

150 0-23 uhgs4e,uhgs6e 0.0421 0.6817 0.7151

160 0-23 uhgs4f,uhgs6f 0.0331 0.9011 0.7172

170 0-23 uhgs4g,uhgs6g 0.0261 0.9653 0.7184

180 0-23 uhgs4h,uhgs6h 0.0208 0.9345 0.7204

190 0-23 uhgs4i,uhgs6i 0.0166 0.7761 0.7220

200 0-23 uhgs4j,uhgs6j 0.0135 0.7347 0.7239

145 0-23 uhgs4o,uhgs6o 0.0477 0.5731 0.7135

155 0-23 uhgs4p,uhgs6p 0.0373 0.8007 0.7155

165 0-23 uhgs4q,uhgs6q 0.0294 0.9566 0.7183

175 0-23 uhgs4r,uhgs6r 0.0233 0.9505 0.7196

Table 9.3 Associated Higgs production with aZ boson (from CDF Note 9863).
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not contribute a real third lepton. Monte Carlo signal simulation does indicate that gluon fusion and

vector-boson fusion have negligible contribution to the three-lepton bin. Thus, we are left with two

signals to study: aWH → WWW → lν, lν, lν signal and aZH → ZWW → ll, lν, jet signal.

With two signals we naturally define two new trilepton signalregions attempting to isolate each,

ameliorating the effort to discriminate each from background based on their unique characteristics.

Consider the three leptons as ordered by their transverse momentumpT (or transverse energy

ET for electrons) such that the highestpT lepton is the1st and the lowestpT lepton is the3rd. First,

we filter trilepton events into anInZPeakcategory if any of the three possible dilepton pairings

(that is, pairing the1st lepton with the2nd lepton; the1st lepton with the3rd lepton; or the2nd lepton

with the3rd lepton) has an invariant mass value that falls within a 10 GeVwindow of theZ-boson

mass at 91 GeV, have opposite signs, and have same flavor. ThisInZPeakregion is chosen to isolate

theZH signal process. The rest of the trileptons events are directed toward theNoZPeakregion,

which focuses on theWH signal process. These regions are new to theH →WW analysis group.

Additionally, theWH analysis has a missing energy cut ofE/T > 20 GeV. This cut drastically

reduces theZγ background contribution and also provides aWH control region in10.0GeV <

E/T < 20.0. Because theWH → WWW → lνlνlν event topology has threeW → lν decays, the

missing energy is relatively large and a negligible amount of signal is lost from moving theE/T cut

up to20.0 GeV from10.0 GeV.

TheE/T distribution for theZH → ZWW trilepton events is somewhat lower than that of

theWH analysis because it produces fewer neutrinos (WWW → lν, lν, lν has three neutrinos

while ZWW → ll, lν, jet has only one), so defining a control region by a higherE/T cut is less

appropriate. TheZH analysis also has somewhat larger backgrounds than theWH region and

is topologically similar to the most significant background, WZ. However, for aZH → ZWW

event to produce a three-lepton signature we either have oneof theW -leptons decaying hadron-

ically or–less frequently–we have aZH → ZWW → llll physics event that loses one of it’s

leptons to an area of the detector that is incapable of reconstructing a track (detector holes or too

far forward in pseudorapidity, for example) but is still recorded by the calorimeter system. There-

fore,ZH trilepton events inherently have a higher number of jets than the backgrounds and very



84

little signal in the NJet= 0 bin. This characteristic of theZH trilepton signal allows us to create a

control region for theZH analysis in the NJet= 0 bin with very little signal loss, and so NJet= 0

events are not included in theZH analysis.

Observe in table 9.2.3 that∼ 77% of the signal in theNoZPeakregion isWH, while∼ 96%

of the signal in theInZPeakregion isZH. We will see in section 9.6 how this division allows us

to focus on the unique characteristic of each signal for discrimination from the background in the

NeuroBayes neural net treatment.

9.2.3 Backgrounds

Both regions of this trilepton analysis have five backgroundcategories considered:WZ, ZZ,

Zγ (replacing Drell-Yan), Fakes (data-basedWW andZ+jets), andtt̄. Each is summarized in

table 9.2.3 along with the predicted signal for amH = 160 GeV standard model Higgs boson and

the data.
CDF Run II Prebless

∫
L = 5.3 fb−1

(mH = 165 GeV/c2) WH Signal Region ZH Signal Region

WZ 7.01 ± 0.96syst 9.01 ± 1.74syst

ZZ 1.49 ± 0.20syst 4.41 ± 0.68syst

Zγ 2.47 ± 0.42syst 3.00 ± 0.63syst

Fakes (WW ,Z+Jets) 3.22 ± 0.97syst 7.74 ± 2.32syst

tt̄ 0.18 ± 0.07syst 0.03 ± 0.01syst

Total Background 14.5 ± 1.58syst 24.3 ± 3.57syst

WH 0.58 ± 0.08syst 0.02 ± 0.004syst

ZH 0.18 ± 0.02syst 0.58 ± 0.08syst

Total Signal 0.76 ± 0.10syst 0.60 ± 0.08syst

Data 14 33

High Mass
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• Heavy Dibosons (WZ, ZZ): TheWZ andZZ diboson contributions provide three physical

leptons, withWZ being the dominant background in both trilepton signal regions. Both

samples are Pythia-based, where theW is allowed to decay inclusively and theZ is forced

to decay leptonically (electron, muon, or tau pairs)[16].

• Zγ: TheZγ background in the trilepton analyses replaces the Drell Yancontribution of the

dilepton analyses and is created by the Bauer generator. We acquire a third lepton from a

Drell Yan process when either an initial or final state radiated photon undergoes a conversion

and showers in the calorimeter for the third lepton. As such,theZγ is the restriction of Drell

Yan to those events which do radiate a photon for the purpose of working with a larger

statistical sample.

• Fakes(WW , Z+Jets): In the dilepton analysis, the Fakes category is measured from single

high pT lepton data (rather than MC) and assumed to have aW+jets event topology, where

the one lepton is from theW -boson. From this data sample, events with one-lepton+denominator

object are selected and then re-weighted based on the rates at which jets fake a lepton, mea-

sured from QCD samples–where ”denominator-objects” are looser lepton objects that do not

fully satisfy lepton ID, but considered candidates for a physical object that may fake a lepton.

Similarly, for the trilepton analyses we are interested in processes that produce two physical

leptons+ one denominator object from the jets. Two highpT lepton data is dominated by

WW andZ+jets. First note that we do not consider simulatedWW background as the

dilepton analyses do to avoid double counting the process. Second, because the rate at which

a jet is expected to fake a lepton is on the order of1 − 5%, the rate at which such an event

is expected to fake two leptons is drastically lower:0.01 − 0.25%. As such, we consider

the contribution ofW+jets with one real lepton and two faked lepton to be negligible for the

trilepton analyses and so label this categoryWW ,Z+Jets instead ofW+Jets, but ”W+Jets”

is still accounted for.
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The actual rates for which a light jet fakes a lepton used in this analysis are estimated from

jet triggered data and expounded further in CDF note [16]. These rates were determined in

theH →WW group’s dilepton analysis and we adopt the same values here.

• tt̄: Thett̄ process is the smallest background, but arguably the most complex. This process

decays to two pairs of ab-jet accompanied by aW boson. For the case of trileptons, we

consider the case of the twoW ’s decaying leptonically. The third lepton signature is then due

to one of theb-jets, which is supposed to produce a lepton candidate with higher probability

than a light jet, but this rate is not precisely known.

Because of this, we cannot ignore the possible contributionof tt̄ in our Fakes background

category where the lepton decayed from theb-jet is the fake lepton (denominator object).

However, anytt̄ that might be included in the highpT lepton data of the Fakes background is

then scaled down by a fake rate determined for a sample of jetsassumed to be mostly light–

hence, thett̄ contribution to the Fakes background is scaled down furtherthan it should be

since it’s jets are the heavyb-jets.

The standard MCtt̄ ntuple used by theH → WW group requires reconstructed leptons to

pass a matching criteria to either a generator-level leptonor photon (for the case of photon

conversion). For our purposes in the trilepton analysis, weare interested in a third lepton

whose signature is the result of thoseb-jets, so we have our own MCtt̄ sample that allows

matching tob-jets as well as leptons and photons. The MCtt̄ sample accounts for such

events that result in three fully identified leptons, as opposed to the 2 leptons+1 fake lepton

signature of the Fakes background.

Lastly, there is inevitably some overlap between thett̄ that occurs implicitly in the Fakes

data-based background and the MC sample. By measuring the difference between the 3-

lepton bin of the defaulttt̄ sample (lepton match only to generator-level leptons or photons)

with anothertt̄ sample allowing matching tob-jets as well, we take half the percentage

difference to be the systematic error (23%) accounting for overlap.
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• Correction to Simulation and Fake Rates:To properly weight events from simulation and

scale data-based backgrounds, we follow the same standard procedures that the rest of the

H →WW group as described on page 41 in CDF Note 9863.

9.2.4 Signal Yields in theNoZPeak and InZPeak Regions

Although we have defined two trilepton signal regions to separately focus on theWH andZH

associated production channels, both regions do contain both signals and are summarized for all

generated masses in table 9.4.
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mH GeV NoZPeak InZPeak

WH ZH Total WH ZH Total

110 0.05 0.02 0.07 0.002 0.06 0.06

120 0.15 0.05 0.20 0.004 0.15 0.15

130 0.28 0.09 0.37 0.008 0.29 0.30

140 0.40 0.12 0.52 0.01 0.41 0.42

145 0.44 0.14 0.58 0.02 0.45 0.47

150 0.47 0.14 0.61 0.02 0.48 0.50

155 0.50 0.16 0.66 0.02 0.51 0.53

160 0.53 0.16 0.69 0.02 0.51 0.53

165 0.50 0.15 0.65 0.02 0.49 0.52

170 0.45 0.14 0.59 0.02 0.46 0.48

175 0.40 0.13 0.53 0.02 0.42 0.44

180 0.35 0.11 0.46 0.02 0.38 0.40

190 0.24 0.08 0.32 0.01 0.27 0.28

200 0.18 0.06 0.24 0.01 0.22 0.23

Table 9.4 Signal Summary
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9.3 Neural Net

The trileptonH → WW analyses rely on the NeuroBayes neural network package to discrim-

inate signal from background; we do not attempt the Matrix Element method in this study. We use

13 input variables for theWH analysis and 16 for theZH analysis. The neural net results can be

seen in figures 9.1, 9.2, 9.3, and 9.4.

Because the interaction topology under consideration involves three leptons and also because

we do not separate the analyses by jet bin (aside from reserving the NJet=0 bin for theInZPeak

control region of theZH analysis), the signatures of the signal regions under consideration involve

many potentially complex variables whose discriminatory power must be explored. As such, a

larger than usual quantity of discriminating variables areused to train the NeuroBayes neural nets

and we have found no reason yet to believe that fewer variables would be any benefit.

Recall that the standard model Higgs boson is postulated as ascalar particle and so decays to

two W -bosons having+1 and−1 spin, respectively. LeptonicW -boson decays have aV − A

distribution, so one of theW bosons decays to a lepton projected forward along its momentum

vector while the other decays its lepton backwards along itsmomentum vector. If the two Higgs-

W -bosons decay close to back-to-back in the experimental rest frame–which is not a terrible as-

sumption for a high mass Higgs–then the two decayed leptons will tend to have a relatively close

proximity. Indeed, we find that this is the case (see figure A.1) for WH events since both Higgs-

W -bosons must decay leptonically. Also,E/T is an excellent discriminating variable forWH events

since three leptonic decays ofW ’s implies at least three neutrinos carrying away undetected energy.

Likewise, a trilepton signal in aZH event implies a hadronic decay of one of the two Higgs-

W -bosons whileWZ andZγ events do not tend to have jets. As such, NJet is an excellent

discriminating variable for theZH signal (see figure A.7). Other variables that are excellent for

discriminatingZH in the trilepton case areE/T (ZH may have fewer neutrinos thatWH, but the

distribution still tends to be higher than the backgrounds), Lead JetET (jets from vector bosons

tend to have higher energy than other sources of jets), and∆R between theW -lepton and the

leading jet (that is, between the decay products of the two Higgs-W -bosons).
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WH Variable Descriptions/Details:

• ∆R b/w Opp. Sign Close Leptons: With three leptons there are three possible pairings of

leptons. Events with all three leptons having the same sign are rejected from this analysis,

so every event has two possible pairings of opposite-signedleptons. Of those two pairings,

this variable is the∆R value of the pairing with lower∆R value.

• E/T : Missing Transverse Energy

• HT : Sum of the transverse energies of all three leptons, theE/T , and all jets.

• Dimass b/w Opp. Sign Close byφ: Dilepton invariant mass of the opposite-signed lepton

pair that is closer in theφ coordinate.

• ∆φ(Lep2,E/T ): The magnitude of the difference inφ between the2nd lepton bypT and the

E/T .

• Inv. Mass(Lep3,E/T ,Jets): Invariant mass of the vector sum of the3rd lepton,E/T , and Jets.

• mT (Leptons,E/T ,Jets): Transverse mass of the vector sum of all three leptons, E/T , and all

jets.

• pT of the2nd lepton bypT .

• ∆R Opp. Sign Far Leptons: With three leptons there are three possible pairings of leptons.

Events with all three leptons having the same sign are rejected from this analysis, so ev-

ery event has two possible pairings of opposite-signed leptons. Of those two pairings, this

variable is the∆R value of the pairing with higher∆R value.

• mT Trilepton Mass: Transverse mass of the vector sum of the three leptons.

• NJet: The number of jets in the event. For this use of NJet, allevents with NJet≥ 2 jets are

thrown into the NJet = 2 bin.

• mT (Lep3,E/T ): Transverse mass of the vector sum of the3rd lepton and theE/T .
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• Inv. Mass(Lep1,Lep2,E/T ): Invariant mass of the vector sum of the1st lepton,2nd lepton, and

E/T .

ZH Variable Descriptions/Details:

• NJet: The number of jets in the event.

• E/T : Missing Transverse Energy

• Lead JetET : Transverse energy of the leading jet. Note that the controlregion forInZPeak

is NJet = 0, so all events in the signal region must have at least one jet by definition. Also,

for this use of NJet, all events with NJet≥ 2 jets are thrown into the NJet = 2 bin.

• ∆R(W -Lep, Lead Jet): TheInZPeakregion is defined by having one lepton paring (opposite

signed, same flavor) near theZ boson mass. Denote the one other lepton not in this pairing

as theW -lepton. This variable is then the∆R between theW -lepton and the leading jet.

• ∆φ(Leptons,E/T ): ∆φ between the vector sum of the three leptons and theE/T .

• HT (Leptons,E/T ,Jets): Sum ofET of all three leptons,E/T , and all jets.

• mT (Leptons,E/T ,Jets): Transverse mass of the vector sum of all three leptons, E/T , and all

jets.

• ∆φ(Lep2,E/T ): The magnitude of the difference inφ between the2nd lepton bypT and the

E/T .

• ∆R b/w Opp. Sign Close Leptons: With three leptons there are three possible pairings of

leptons. Events with all three leptons having the same sign are rejected from this analysis,

so every event has two possible pairings of opposite-signedleptons. Of those two pairings,

this variable is the∆R value of the pairing with lower∆R value.

• Trimass:The invariant mass of the vector sum of the three leptons.

• Inv. Mass(Lep3,E/T ,Jets): Invariant mass of the vector sum of the3rd lepton,E/T , and Jets.
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• Dimass(W -Lep,E/T ): The InZPeakregion is defined by having one lepton paring (opposite

signed, same flavor) near theZ boson mass. Denote the one other lepton not in this pairing

as theW -lepton. This variable is then the invariant mass of the vector sum of theW -lepton

and theE/T .

• mT Jets: Transverse mass of the vector sum of all jets. Note thatthe control region for

InZPeakis NJet = 0, so all events in the signal region must have at least one jet by definition.

• mT (W -Lep,E/T ): Transverse mass of the vector sum of theW -lepton and theE/T .

• ∆φ(Z-Leptons,W -Lepton):∆R between the vector sum of the two leptons whose dimass is

near theZ-boson mass, and the other lepton.

• ∆R Opp. Sign Far Leptons: With three leptons there are three possible pairings of leptons.

Events with all three leptons having the same sign are rejected from this analysis, so ev-

ery event has two possible pairings of opposite-signed leptons. Of those two pairings, this

variable is the∆R value of the pairing with higher∆R value.
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Variable(WH) 110 120 130 140 145 150 155

∆R b/w Opp. Sign Close Lept. 12.4 40.8 9.69 40.2 41.4 40.8 43.1

E/T 26.0 21.2 33.8 25.7 26.2 28.1 28.9

Dimass b/w Opp. Sign Close byφ 41.0 14.9 29.7 9.52 8.14 12.7 11.6

HT 3.38 3.82 16.1 11.9 13.1 9.14 9.38

∆φ(Lep2,E/T ) 5.77 6.48 7.60 6.67 6.47 7.74 8.94

mT (Leptons,E/T ,Jets) (0.38) 2.08 4.84 5.46 5.99 6.33 7.42

pT2
nd Lepton 2.77 5.06 3.26 5.12 3.08 4.57 6.88

Inv. Mass(Lep3,E/T ,Jets) 2.05 2.46 4.34 4.51 4.57 7.84 6.64

∆R Opp. Sign Far Lept. 9.24 11.0 12.6 9.93 10.9 6.31 6.67

NJet 7.24 7.30 3.64 3.16 3.27 3.04 3.11

mT Trilepton Mass (0.52) 2.62 3.78 3.85 6.62 6.67 4.44

mT (Lep3,E/T ) 3.38 2.13 (0.80) (0.04) (0.90) 2.32 3.17

Inv. Mass(Lep1,Lep2,E/T ) 8.38 8.34 4.51 2.69 4.16 1.75 1.56

Variable(WH) 160 165 170 175 180 190 200

∆R b/w Opp. Sign Close Lept. 45.7 47.1 31.5 29.0 27.3 19.5 17.3

E/T 29.8 11.3 45.9 46.4 47.0 48.0 21.6

Dimass b/w Opp. Sign Close byφ 12.4 10.9 8.61 8.11 7.31 6.78 5.14

HT 10.5 11.3 6.05 13.4 16.4 22.7 49.7

∆φ(Lep2,E/T ) 9.49 8.81 9.19 9.41 7.70 7.37 6.58

mT (Leptons,E/T ,Jets) 8.08 8.57 9.93 8.35 8.67 9.54 10.7

pT2
nd Lepton 7.85 4.59 8.48 8.57 4.66 8.28 8.45

Inv. Mass(Lep3,E/T ,Jets) 6.99 7.63 12.7 10.0 8.67 8.72 7.34

∆R Opp. Sign Far Lept. 6.30 5.65 5.79 5.18 5.25 5.54 5.01

NJet 4.58 3.09 3.67 3.36 3.50 2.72 2.25

mT Trilepton Mass 4.59 7.55 4.65 4.57 7.70 3.98 3.23

mT (Lep3,E/T ) 3.77 4.14 4.46 3.64 3.68 3.05 1.85

Inv. Mass(Lep1,Lep2,E/T ) 3.15 1.98 1.52 (0.90) (0.77) (0.26) 1.67

Table 9.5WH Significance: The variables are ordered by their significance as discriminating
variables for the NeuroBayes neural net trained at the 160 GeV signal. Values in parentheses (*)

indicate the input variable was not used for the givenmH .
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Variable(ZH) 110 120 130 140 145 150 155

NJet 23.6 29.7 33.2 37.6 39.6 41.1 43.2

E/T 8.07 9.35 13.4 22.7 23.3 23.6 24.8

Lead JetET 3.76 7.23 14.5 12.0 16.3 17.3 17.9

∆R(W -Lep, Lead Jet) 19.2 17.4 16.7 13.6 13.8 13.0 12.7

∆φ(Leptons,E/T ) 21.3 20.5 19.1 10.9 10.2 12.4 11.6

mT (Leptons,E/T ,Jets) 3.50 1.05 5.96 5.86 4.93 3.93 9.26

∆φ(Lep2,E/T ) 4.42 3.64 4.54 5.31 4.81 4.85 5.60

∆R b/w Opp. Sign Close Lept. 13.8 13.9 10.7 14.6 11.7 10.9 7.10

Trimass 11.6 9.50 9.14 6.83 6.96 6.96 6.35

Inv. Mass(Lep3,E/T ,Jets) 7.29 2.78 (0.23) 1.91 1.47 1.94 4.67

HT (Leptons,E/T ,Jets) (0.48) (0.95) 2.68 6.38 7.14 6.93 5.81

mT Jets (1.01) 2.38 (1.01) (0.98) (0.18) 2.36 2.49

Dimass(W -Lep,E/T ) 2.02 (0.07) 2.05 2.80 2.76 2.34 3.09

mT (W -Lep,E/T ) 6.55 4.46 (0.72) 1.78 3.44 3.99 3.56

∆R Opp. Sign Far Lept. 2.82 3.25 2.60 2.40 2.36 2.61 1.83

∆φ(Z-Leptons,W -Lepton) 1.55 (1.82) 1.43 (1.19) 2.54 2.64 2.09

Variable(ZH) 160 165 170 175 180 190 200

NJet 45.8 46.6 46.8 47.4 25.8 24.7 22.2

E/T 26.7 27.8 27.8 28.4 15.0 13.9 12.7

Lead JetET 19.2 19.0 19.5 20.1 12.2 11.6 10.6

∆R(W -Lep, Lead Jet) 13.2 12.7 12.1 11.0 7.84 5.53 4.48

∆φ(Leptons,E/T ) 12.0 13.2 12.1 11.0 9.72 7.55 6.82

mT (Leptons,E/T ,Jets) 8.62 9.39 9.09 8.52 10.9 9.81 9.26

∆φ(Lep2,E/T ) 8.19 8.11 8.02 6.67 5.48 5.17 4.52

∆R b/w Opp. Sign Close Lept. 6.54 6.06 5.23 4.95 4.52 3.63 2.81

Trimass 5.84 5.04 4.87 4.87 4.52 3.07 2.66

Inv. Mass(Lep3,E/T ,Jets) 5.84 6.64 6.60 6.23 6.81 6.93 7.32

HT (Leptons,E/T ,Jets) 5.02 5.86 7.97 9.66 51.1 54.4 58.7

mT Jets 4.28 4.58 4.88 4.79 4.31 3.38 2.53

Dimass(W -Lep,E/T ) 4.08 4.22 4.68 4.54 3.88 3.98 3.25

mT (W -Lep,E/T ) 3.11 2.62 3.28 2.68 3.24 2.93 3.00

∆R Opp. Sign Far Lept. 2.94 2.61 2.34 2.02 2.45 1.40 1.32

∆φ(Z-Leptons,W -Lepton) 2.60 2.59 2.94 1.98 2.07 1.32 1.35
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Figure 9.1 TrileptonWH NeuroBayes Neural Network output (linear scale)
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Figure 9.2 TrileptonWH NeuroBayes Neural Network output (logarithmic scale)
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Figure 9.3 TrileptonZH NeuroBayes Neural Network output (linear scale)
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Figure 9.4 TrileptonZH NeuroBayes Neural Network output (logarithmic scale)
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9.4 Control Regions

The modeling of basic kinematic properties and the discriminating variables in the Monte Carlo

simulation is tested by comparing the distributions of these variables in the final selected data. Ide-

ally, the modeling of these variables is further tested by creating orthogonal ”control regions”

which are enhanced in specific major backgrounds and containminimum possible signal contribu-

tion.

The control regions we choose for both theWH andZH trilepton analyses contain minimal

signal (see table 9.4) so cutting them out of the analyses drastically cuts down the background to

discriminate against in addition to providing a verification of modelling.

They are:

• WH Analysis Control Region:10.0 < E/T < 20.0

• ZH Analysis Control Region: Number of Jets= 0

The topology ofWH associated production in the trilepton channel also contains at least three

neutrinos (more ifW → τντ → le,µνe,µντ decays are involved), resulting in high missing energy

values (see figure A.1). The lowE/T region is a natural choice for a control region in theWH

analysis since it contains negligible signal contributionand is enriched inZγ and Fakes back-

grounds. Also including aE/T > 20 cut for the WH signal region substantially enhances the signal

to background ratio in the final signal region.

Similarly, the topology ofZH associated production lends to a preference for at least oneor

two jets (see figures B.5 and A.7) since one of the two Higgs-W -bosons decays hadronically. Only

∼ 10% of the trileptonZH signal is present in the NJet= 0 bin, but much of it’s most dominant

background,WZ, is. Thus, the NJet= 0 bin is a natural choice for the control region of the

ZH trilepton analysis. Unfortunately, there are several nefarious difficulties that arise from this

choice that must be discussed. First, three of the discriminating variables chosen in the neural

network treatment discussed in section 9.6 are undefined when NJet= 0 (though can be powerful

discriminators among those events that do have at least one jet, serving as yet another argument
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for this choice of control region) and NJet must be excluded as a discriminating variable as well

since the control region allows it only one possible value bydefinition (a variable cannot be used

to discriminate background from signal when both background and signal must have identical

values for that variable). The neural network result for thecontrol region ofZH has the following

removed from the list of discriminating variables:

• NJet

• ET of the leading jet

• ∆R between theW -lepton and the leading jet. Denote the two leptons with dilepton invariant

mass∈ [81.0, 101.0] GeV (the definition of theInZPeakregion for theZH analysis) as the

Z-leptons, then the other lepton is denoted theW -lepton.

• Transverse mass of the vector sum of all jets

Further, with thett̄ background being borderline negligible already, our montecarlo sample of

tt̄ does not contain a single trilepton event in theZH control region. Summarily, to obtain a

neural network result for thisInZPeakcontrol region we had to retrain a neural network on the

signal region (NJet≥ 1) excluding both the four aforementioned discriminating variables and the

tt̄ background.

To support the claim that this neural network result for theInZPeakcontrol region of theZH

analysis is valid, we first emphasize that thett̄ contribution to the signal region is only 0.02 events

expected in 4.8fb−1 of data compared to a total background of20.9± 2.64. As such, it’s arguable

that we could have removed this background from the analysisentirely without any noticeable

difference. Second, we chose 16 discriminating variables for the signal region, so losing these four

is a serious but not critical loss; the total correlation to target drops from 61.9% to 52.2%.

While this choice of control region poses challenges, we arerewarded with both a cut that

excludes a large portion of the backgrounds with minimal signal loss and with three powerful

discriminating variables that would be ill-defined otherwise.
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CDF Run II Prebless
∫
L = 5.3 fb−1

(mH = 165 GeV/c2) WH Signal Region ZH Signal Region

WZ 0.77 ± 0.11syst 32.0 ± 6.19syst

ZZ 0.72 ± 0.10syst 3.55 ± 0.55syst

Zγ 19.4 ± 3.31syst 5.56 ± 1.17syst

Fakes (WW ,Z+Jets) 7.58 ± 2.27syst 9.43 ± 2.83syst

tt̄ 0.01 ± 0.002syst - ± -

Total Background 28.4 ± 4.02syst 50.5 ± 7.81syst

WH 0.025 ± 0.003syst 0.06 ± 0.01syst

ZH 0.014 ± 0.002syst 0.06 ± 0.01syst

Total Signal 0.038 ± 0.005syst 0.12 ± 0.02syst

Data 31 49

High Mass

We provide here the neural net score for the discriminating variables in theWH andZH

trilepton analyses control regions. The MC models the data well.
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Figure 9.5WH Control Region (10.0 GeV< E/T < 20.0 GeV) andZH Control Region
(NJet= 0) neural net results against samples trained on signal regions.
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9.5 Systematic Errors

The systematic uncertainties used are summarized in table 9.7. Most values used are standard

to allH → WW analyses, but sinceZγ is a new background in this analysis–and a couple other

reasons–there are several new systematics particular to this analysis.

• Zγ (andWγ) Scaling: Note that theWγ background is already scaled down by17% in

otherH →WW analyses due to known mismodelling of photon conversions. We are using

the same scale factor for theZγ contribution since the same photon conversion affect is

assumed, as such we use the same systematic error associatedwith this scale factor. Also,

we keep this systematic error correlated between theZγ of the trilepton analyses andWγ of

the dilepton analyses because of the common origin.

• Zγ Higher Order Diagrams: We have forWγ in the dilepton analysis theWγ higher order

diagramssystematic, which accounts for poor MC modeling beyond leading order. Like-

wise, we assume the same error of11% for a newZγ higher order diagramssystematic

since both are modelled by the Bauer MC generator.

• b-Jet Fake Rate: Although tt̄ is a small contribution to the background for these highmH

standard model Higgs boson in the trilepton case, we do have to account for the peculiar

situation that our3rd lepton is faked from ab-jet and the rate at which ab-jet fakes a lepton–

as opposed to a light jet–is not well-known. Further, as a background with two real leptons

and one faked, we cannot ignore the possible coverage oftt̄ in the data-based Fakes category.

We know that the fake rates used in the Fakes category is basedon jet samples populated

mostly with light jets and presume thatb-jets in particular are more likely than light jets to

produce a signature that could fake a lepton. Hence, whatever tt̄ contribution that exists

in the Fakes category is scaled down by the light jet dominated fake rate, meaning it is

scaled down too far. To make up for the difference we use an MCtt̄ sample that allows

reconstructed leptons to match to generator-level leptons, photons, orb-jets (typically, for

these reconstructed MC leptons to be considered fully ”found” they must pass a matching
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criterion to a generator-level lepton or photon only). Now,of course, we have the problem of

possible double-counting oftt̄ between the MC and what implicittt̄ contribution populates

the Fakes category. To account for the double-counting possibility, we assign a systematic

error defined to be one half the percentage difference between the MCtt̄ sample that allows

leptons to match to generator-level leptons, photons, andb-jets; and the MCtt̄ sample that

allows such matching to generator-level leptons and photons only. The systematic errors

adopted are:

– WH Analysis (trilep-NoZPeak region): 0.223

– ZH Analysis (trilep-InZPeak region): 0.231

• Jet Energy Scaling: Jet energy scaling is modelled inclusively to all jet bins,so removing

the zero-jet bin as a control region for theZH analysis introduces a slight mismodelling for

the signal region. To account for this, we re-run the analysis with different MC samples that

have the jet energy scaling increased and decreased by one standard deviation.

If the jet energy scale is shifted down, then the jets of an event have lower energy, so event

count fewer jets on average because fewer jets have enough energy to be considered above

the energy threshold to be counted as such. Similarly, if thejet energy scale is shifted up,

then the jets of an event have higher energy, so events count more jets on average because

more jets have enough energy to be considered above the threshold energy to be counted.

Singe theZH analysis signal region only has NJet≥ 1 (the NJet= 0 bin is the control

region), the events from samples with jet energy scaled downhave fewer jets on average

so more events are shifted out of the signal region and into the control region. Likewise,

events with the jet energy scaled up will count more jets on average and shift events out of

the control region and into the signal region. These shifts change the weighted count for the

backgrounds for some given integrated luminosity. As such,we must assign a systematic

error for each background corresponding to the error of the jet energy scaling.
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We then take the average of the percent difference between each and the original samples.

Differences necessitating systematic errors arose only for WZ, ZZ, andZγ samples, and

only for theZH analysis.

– WZ (ZH Signal Region): 0.097

– ZZ (ZH Signal Region): 0.052

– Zγ (ZH Signal Region): 0.088

We explored the possibility of having a jet energy scalingshapesystematic as well. That is,

even if the total count of a particular process does not change appreciably, we must account

for the possibility that the distribution of the process in the neural net output (the templates

that serve as the inputs for calculating statistical limits) changes. The subsequent limits could

be altered if a process is shifted towards or away from the signal region of the templates. To

check, we used the shape systematic error for the limit calculation at themH = 165 GeV

mass point and compared the results to default values. The result is in table 9.8. We see

that the shape systematic does not affect the limit results and is therefore not included in the

analysis at this time.

• MC Run Dependence: TheZγ stntuples used cover only periods0 − 11, so we assign the

customary MC run dependence systematics for such samples. This is determined by com-

paring aWW sample with partial run dependence (periods0−7) with a fully run-dependent

WW sample.

• Lepton, Trigger ID, Luminosity, Parton Distribution Function Model: Finally, note that we

do not use systematic errors for the lepton, trigger ID, luminosity, and PDF model efficien-

cies because of the scale factor derived from theWγ control region in the dilepton analy-

sis. Since we’re measuring theWγ normalization directly from data, that systematic should

cover these effects. However, to be conservative–especially since we measure the scale factor

in a control region with selection cuts that differ from our various signal regions–we keep
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the systematic uncertainties on the MC that are not related to normalization (higher-order

kinematic effects, MC jet modelling).
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Systematic Uncertainty WZ ZZ Zγ tt̄ Fakes WH ZH

Diboson Higher Order Diagrams 0.100 0.100

tt̄ Higher Order Diagrams 0.100

Higgs Higher Order Diagrams 0.100 0.100

PDF Model 0.027 0.027 0.021 0.012 0.009

Lepton ID Efficiencies 0.020 0.020 0.020 0.020 0.020

Trigger Efficiences 0.021 0.021 0.020 0.021 0.021

Light Jet Fake Rates 0.300

b-Jet Fake Rate* 0.23

Luminosity 0.059 0.059 0.059 0.059 0.059

MC Run Dependence 0.050*

Jet Energy Scale 0.098*a 0.053*a 0.086*a 0.084*a 0.011*a

Zγ Higher Order Diagrams* 0.110*

Wγ Scaling 0.110*

σDiboson 0.060 0.060

σtt̄ 0.100

σVH 0.050 0.050

σZγ* 0.050*

Table 9.7 Systematic Uncertainties: Standard values for systematics used in otherH → WW
analyses are used wherever applicable.

a Only for theZH analysis (trilep-InZPeakregion) because the NJet= 0 bin is removed from the

signal region and made a control region.

∗ New to trilepton analysis, not in dilepton analysis.
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mH = 165 GeV bin Exp. Limit−1σ Median Exp. Limit Exp. Limit+1σ

WH Analysis, JES Shape Syst. 6.7 8.9 12.3

WH Analysis, Standard 6.7 8.8 12.4

ZH Analysis, JES Shape Syst. 9.4 12.5 17.7

ZH Analysis, Standard 9.4 12.5 17.2

Trilepton Analyses, JES Shape Syst. 4.7 6.3 8.9

Trilepton Analyses, Standard 4.7 6.3 8.9

Table 9.8 Compare default limit values for theZH,WH, and combined trilepton analyses. we
see that a jet energy scaling shape systematic is not necessary.
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9.6 Results

The results of this trilepton analysis present a significantcontribution to theH → WW com-

bined result. We are poised to solidify and expand the windowof standard model Higgs boson

exclusion within163 < mH < 166 GeV [18]. In the 165 GeV bin, theWH analysis limits are set

at 8.86 times the expected standard model limit; theZH analysis is set at 12.6 times the expected

standard model limit; and the combined trilepton analysis is set at 6.3 times the expected standard

model limit. Finally, for the combinedH →WW analysis result, in the 165 GeV bin the expected

limit drops from 1.21[15] to 1.15 while the observed limit drops from 1.23 to 1.08. As such, we are

poised to begin excluding the standard model Higgs boson at95% confidence level with CDF-only

analyses in short order.

The limit calculations presented were computed withHWWLimit version ofMCLimit. Expected

limits for theZH,WH, and combined trileptons were calculated in each case with 1,000 iterations

of 10,000 pseudoexperiments (1000 iterations of 1000 pseudoexperiments performed 10 times),

while 500,000 iterations of 1 pseudoexperiment were performed for the observed results–as is

standard. For greater precision, the combined HWW dileptonand trilepton result used 30,000

pseudoexperiments instead of 10,000 for the expected limits, and 5 pseudoexperiment (500,000

iterations each) instead of 1 for the observed limits.
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Figure 9.6 TrileptonNoZPeakRegion Limits
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Limits 110 120 130 140 145 150 155

+2σ/σSM 180 67.2 35.5 24.4 22.5 20.3 18.4

+1σ/σSM 130 48.3 25.3 17.7 16.0 14.5 13.1

Median/σSM 91.6 34.1 17.9 12.5 11.4 10.4 9.35

−1σ/σSM 67.9 25.1 13.2 9.23 8.40 7.76 7.05

−2σ/σSM 54.0 19.9 10.5 7.36 6.67 6.25 5.72

Observed/σSM 94.4 36.9 19.9 16.5 13.9 13.8 12.2

Limits 160 165 170 175 180 190 200

+2σ/σSM 16.9 17.2 19.8 22.1 25.3 27.1 49.3

+1σ/σSM 12.2 12.4 14.0 15.6 18.0 26.8 35.1

Median/σSM 8.62 8.86 9.91 11.0 12.8 19.1 24.9

−1σ/σSM 6.48 6.71 7.49 8.29 9.62 14.3 18.5

−2σ/σSM 5.29 5.60 6.17 6.85 7.90 11.7 15.0

Observed/σSM 11.1 11.0 12.6 13.6 17.3 23.9 33.3

Table 9.9WH trilepton analysis limits for4.8fb−1.
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Figure 9.7 TrileptonInZPeakRegion Limits
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Limits 110 120 130 140 145 150 155

+2σ/σSM 327 112 57.0 37.3 32.6 29.7 26.7

+1σ/σSM 233 80.6 40.6 26.5 23.2 21.1 19.1

Median/σSM 162 56.3 28.5 18.8 16.4 14.9 13.4

−1σ/σSM 116 40.6 20.5 13.7 11.9 10.8 9.90

−2σ/σSM 88.0 31.1 15.7 10.6 9.37 8.54 7.86

Observed/σSM 192 71.9 40.8 27.0 25.2 20.3 19.1

Limits 160 165 170 175 180 190 200

+2σ/σSM 25.2 24.6 26.8 29.0 31.7 43.3 52.0

+1σ/σSM 17.8 17.6 19.1 20.6 22.4 30.8 37.0

Median/σSM 12.6 12.6 13.5 14.6 16.0 21.9 26.4

−1σ/σSM 9.27 9.44 10.1 10.9 11.9 16.3 19.8

−2σ/σSM 7.50 7.65 8.37 8.91 9.68 13.4 16.2

Observed/σSM 17.0 15.8 17.8 18.7 22.1 32.8 34.5

Table 9.10ZH trilepton analysis limits for4.8fb−1.
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Figure 9.8 Trilepton Combined Limits
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Limits 110 120 130 140 145 150 155

+2σ/σSM 151 55.0 28.3 19.2 16.9 15.8 13.6

+1σ/σSM 108 38.9 20.0 13.7 12.1 11.1 9.74

Median/σSM 75.8 27.4 14.0 9.63 8.55 7.79 6.84

−1σ/σSM 54.9 20.0 10.2 6.96 6.16 5.69 5.03

−2σ/σSM 42.0 15.2 7.81 5.31 4.79 4.45 3.97

Observed/σSM 77.4 30.5 17.2 13.5 12.0 10.6 9.64

Limits 160 165 170 175 180 190 200

+2σ/σSM 12.5 12.5 13.6 15.3 17.4 24.8 31.5

+1σ/σSM 8.93 8.91 9.87 10.9 12.4 17.7 22.4

Median/σSM 6.33 6.31 6.95 7.72 8.73 12.6 15.8

−1σ/σSM 4.65 4.68 5.16 5.70 6.47 9.27 11.6

−2σ/σSM 3.69 3.78 4.17 4.57 5.13 7.36 9.17

Observed/σSM 8.33 7.61 8.90 9.52 12.4 18.1 22.0

Table 9.11 Trilepton combined (WH andZH) analysis limits for4.8fb−1.
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Limits 110 120 130 140 145 150 155

+2σ/σSM 49.0 17.1 8.52 5.62 4.91 4.06 3.34

+1σ/σSM 34.2 11.9 5.95 3.94 3.39 2.84 2.32

Median/σSM 22.8 8.02 4.01 2.64 2.27 1.91 1.57

−1σ/σSM 15.4 5.39 2.70 1.77 1.52 1.29 1.06

−2σ/σSM 10.8 3.76 1.86 1.24 1.08 0.90 0.74

Observed/σSM 30.1 9.79 4.83 3.52 2.64 2.21 1.77

Limits 160 165 170 175 180 190 200

+2σ/σSM 2.57 2.45 2.95 3.48 4.23 6.65 9.08

+1σ/σSM 1.79 1.70 2.05 2.42 2.91 4.57 6.33

Median/σSM 1.21 1.15 1.39 1.64 1.96 3.03 4.20

−1σ/σSM 0.83 0.79 0.94 1.11 1.32 2.04 2.80

−2σ/σSM 0.59 0.57 0.67 0.78 0.93 1.42 1.93

Observed/σSM 1.19 1.08 1.49 1.63 1.94 3.83 6.41

Table 9.12 HWW w/ Trileptons Combined Expected Sensitivity.
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9.7 Conclusions
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Appendix A: Neural Net Input Variables
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Figure A.2 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV):HT (all leptons,E/T , all jets),
Dimass Opp. Sign Leptons (closer pair inφ).
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Figure A.3 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV):∆φ between the2nd lepton
andE/T , Inv. mass of the3rd lepton+E/T+Jets.
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Figure A.4 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV):mT (Leptons,E/T ,Jets),pT of
2nd Lepton
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Figure A.5 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV):∆R Opp. Sign Far Leptons,
mT Trilepton Mass.
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Figure A.6 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV): NJet (note that the 0-jet bin is
not used in the analysis),mT (Lep3,E/T ).
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Figure A.7 NoZPeakSignal Region (10.0 GeV< E/T < 20.0 GeV): Inv. Mass(Lep1,Lep2,E/T ).
InZPeakSignal Region (NJet6= 0): NJet.
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Figure A.8 InZPeakSignal Region (NJet6= 0): E/T , Lead JetET .
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Figure A.9 InZPeakSignal Region (NJet6= 0): ∆R(W -Lep, Lead Jet),∆φ(Leptons,E/T ).
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Figure A.10 InZPeakSignal Region (NJet6= 0): HT (Leptons,E/T ,Jets),mT (Leptons,E/T ,Jets).
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Figure A.11 InZPeakSignal Region (NJet6= 0): ∆φ(Lep2,E/T ), ∆R b/w Opp. Sign Close
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Figure A.12 InZPeakSignal Region (NJet6= 0): Trilepton Invariant Mass, Inv.
Mass(Lep3,E/T ,Jets).
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Figure A.13 InZPeakSignal Region (NJet6= 0): Dimass(W -Lep,E/T ),mT Jets.
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Figure A.14 InZPeakSignal Region (NJet6= 0): mT (W -Lep,E/T ), ∆φ(Z-Leptons,W -Lepton).
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Figure A.15 InZPeakSignal Region (NJet6= 0): ∆R Opp. Sign Far Leptons.
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Figure B.1 NoZPeakControl Region (10.0 GeV< E/T < 20.0 GeV):∆R Opp. Sign Close
Leptons,E/T ,HT (all leptons,E/T , all jets).
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Figure B.2 NoZPeakControl Region (10.0 GeV< E/T < 20.0 GeV): Dimass Opp. Sign Leptons
(closer pair inφ), ∆φ between the2nd lepton andE/T , Inv. mass of the3rd lepton+E/T+Jets.
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Figure B.3 NoZPeakControl Region (10.0 GeV< E/T < 20.0 GeV):mT (Leptons,E/T ,Jets),pT of
2nd Lepton,∆R Opp. Sign Far Leptons.
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Figure B.4 NoZPeakControl Region (10.0 GeV< E/T < 20.0 GeV):mT Trilepton Mass, NJet,
mT (Lep3,E/T ).
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Figure B.5 NoZPeakControl Region (10.0 GeV< E/T < 20.0 GeV): Inv. Mass(Lep1,Lep2,E/T ).
InZPeakControl Region (NJet=0): NJet,E/T .
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Figure B.6 InZPeakControl Region (NJet=0):∆φ(Leptons,E/T ),HT (Leptons,E/T ,Jets),
mT (Leptons,E/T ,Jets)
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Figure B.7 InZPeakControl Region (NJet=0):∆φ(Lep2,E/T ), ∆R b/w Opp. Sign Close Lept,
trilepton invariant mass.
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Figure B.8 InZPeakControl Region (NJet=0): Inv. Mass(Lep3,E/T ,Jets), Dimass(W -Lep,E/T ),
mT (W -Lep,E/T ).
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Figure B.9 InZPeakControl Region (NJet=0):∆φ(Z-Leptons,W -Lepton),∆R Opp. Sign Far
Leptons.
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Appendix C: U(1) Global Symmetry Breaking

The Standard Model and it’s component quantum field theoriesare based on symmetries of par-

ticular groups. Equally important is the concept that symmetries of nature may be spontaneously

broken with physical consequences. In this and the subsequent few sections of the appendix, we

shall explore the concept of spontaneously broken symmetries because the idea is central to the

function of the Higgs boson in the Standard Model.

In this section, we shall explore the concept of spontaneously brokenU(1) symmetry for

a complex scalar particle. An arbitrary complex field has real and imaginary components, by

definition.[12]

φ =
1√
2
(φ1 − iφ2) (C.1)

It’s complex conjugate is then:

φ =
1√
2
(φ1 + iφ2) (C.2)

We postulate the lagrangian for this particle:

L = (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(C.3)

The first term has the typical form of kinetic energy, the second terms is the potential energy or “rest

mass,” and the last term governs the possibility of an interaction. If m2
0 > 0, then the lagrangian

describes a complex scalar particle with massm0.

Denote the last two term asV (φ) = m2
0φ

†φ + 1
4
λ
(
φ†φ
)2

, the potential. The task of deter-

mining the particle spectrum of theφ field reduces to finding the minima ofV (φ) and calculating

perturbative oscillations from it.

Recall that theU(1) symmetry group is is the group of angular rotations in the complex plane.

We say the lagrangian exhibits aU(1) global symmetry, or is “invariant” underU(1) transforma-

tions, because if we rotate the fieldφ in the complex plane by some arbitrary angleα in a manner

not dependent on spacetime location

φ→ φ′ = eiαφ (C.4)
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then the lagranian does not change

L = (∂µφ
′)
†
(∂µφ′)−m2

0φ
′†φ′ − 1

4
λ
(

φ′†φ′
)2

(C.5)

=
(
∂µφe

iα
)† (

∂µφeiα
)
−m2

0φ
†e−iαφeiα − 1

4
λ
(
φ†e−iαφeiα

)2
(C.6)

= (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(C.7)

(C.8)

Consequently, the physics implied by the lagrangian also does not change. It is important that the

rotation is not dependent on spacetime coordinates becauseif it was, then the partial derivatives

would act on the rotation, extra terms would arise, and the lagrangian would therefore not be

invariant under the transformation.

Symmetries in physics imply conservation of some property.Invariance to spatial location

implies conservation of momentum; Invariance to temporal location implies conservation of en-

ergy; etc. In this case, invariance to rotations in the complex plane implies conservation by

charge, which can be derived by studying the lagrangian under an infinitesimalU(1) transfor-

mationφ→ φ′ = (1 + iα)φ[25]. However, this is not the task at hand.

If we assumem2
0 > 0, then the potential simply has a unique and stable extremum at the origin.

The quantum theoretical prescription for calculating the particle state spectrum is to determine

small harmonic oscillations about this minimum. The symmetry about the origin is stable and

would remain unbroken.

If, however,m2
0 < 0, then the potential still exhibits the same cylindrical symmetry, but the

extremum at the origin is now a maximum and there is a minima ring that assumes the lowest

value of the potential. The potential at the origin is unstable, and so it is natural for the symmetry

to “break” by having such a state fall to one corresponding tothe minima ring.
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Determining the particle spectrum now requires choosing some point on the minima circle to

perform the perturbative expansion. The minima manifold isfound at

dV

d(φ†φ)
= m2

0 +
λ

4
2φ†φ = 0 (C.9)

φ†φ = −2m2
0

λ
(C.10)

v ≡
√

φ2
1 + φ2

2 =

√

−4m2
0

λ
(C.11)

The new parameterv is then the radius of the circle.

One way to proceed is to expand about the pointφ1 = v1, φ2 = 0. Let

φ(x) =
1√
2
(v + η(x) + iξ(x)) (C.12)

Then η(x) is a field perturbation in theℜ direction and the perturbationξ(x) in the purelyℑ
direction. We find the consequent particle spectrum by putting this expression ofφ(x) back into

the lagrangian.

L = (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(C.13)

=
1

2
(v + ∂µη − i∂µξ) (v + ∂µη + i∂µξ)− m2

0

2
(v + η − iξ) (v + η + iξ) (C.14)

− 1

16
λ [(v + η − iξ) (v + η + iξ)]2 (C.15)

=
1

2
(∂µξ)

2 +
1

2
(∂µη)

2 +m2
0η

2 + (cubic and quartic terms) (C.16)

(C.17)

From them2
0η

2 term, we see theη-field perturbation is associated with a particle of massmη =
√

−2m2
0. There is no mass term for theξ-field. In attempting to generate a massive gauge boson,

spontaneously broken gauge theory has provided its own massless particle.

Pictorially, notice that theη-perturbation (the one that does result in a massive particle) climbs

up the potential well while theξ-perturbation (the massless one) is directed tangent to thecircular

minima manifold. Perturbing up the potential well implies the existence of an associated massive

particle state.
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This suggests a possibly more appropriate choice of how to parameterize the field perturbations.

Remember that the choice to expand aboutφ1 = v, φ2 = 0 was arbitrary. Let’s parameterize the

perturbations in polar, rather than cartesian, coordinates. That way, we need not specify where

on the minima manifold we expand around; the argument applies equivalently to all choices. One

field perturbation will be in the radial direction, the otherin the angular.

φ(x) =
ρ(x)√

2
︸︷︷︸

Radial Perturbation

· e
i
v
θ(x)

︸ ︷︷ ︸

Angular Perturbation

(C.18)

Since the minima manifold has a radiusv, ρ(x) = v + h(x) (spoiler alert: the letter “h” is chosen

for this perturbation off the potential minimum because this is a precursor to the Higgs boson).

Just as before, we putφ(x) back into the lagrangian and see what the particle spectrum looks

like.

L = (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(C.19)

=
1√
2
e−

i
v
θ(x)

[

∂µρ(x)−
i

v
ρ(x)∂µθ(x)

]
1√
2
e

i
v
θ(x)

[

∂µρ(x) +
i

v
ρ(x)∂µθ(x)

]

(C.20)

− 1

2
m2

0ρ
2(x)− 1

16
λρ4(x) (C.21)

=
1

2

[

(∂µρ)(∂
µρ) +

1

v2
ρ2(∂µθ)(∂

µθ)

]

− 1

2
m2

0ρ
2 − 1

16
λρ4 (C.22)

=
1

2
(∂µh+ v)(∂µh+ v) +

1

2v2
(h+ v)2(∂µθ)

2 − 1

2
m2

0(h
2 + 2vh+ v2)− 1

16
λ(h+ v)4

(C.23)

=
1

2
(∂µh)

2 + v(∂µh) +
1

2
v2 +

(
1

2v2
h2 +

1

v2
hv +

1

2v2
v2
)

(∂µθ)
2 (C.24)

− 1

2
m2

0h
2 −m2

0vh−
1

2
m2

0v
2 − 1

16
λ(h+ v)4 (C.25)

=
1

2
(∂µh)

2 +
1

2
(∂µθ)

2 − 1

2
m2

0h
2 + · · · (C.26)

(C.27)

Hence, choosing any arbitrary location on the minima manifold and calculating the particle spec-

trum via field perturbations, we have kinetic terms for bothh(x) andθ(x), but a mass term only
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for h(x). Also, given this parametrization ofφ(x), the vacuum expectation value is

〈0 | φ | 0〉 = v√
2

(C.28)

This is a situation where a symmetric field potential is spontaneously broken in nature and this

breaking manifests in a physics different from the situation of the origin being a stable extremum,

in which case the symmetry would not spontaneously break in nature.
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Appendix D: U(1) Local Symmetry Breaking

The situation of globalU(1) symmetry explored in section C is a special case of the topic of this

section, localU(1) symmetry. This scenario is also referred to as the “abelian [commutative] Higgs

model.”[12] It is not the fully Standard Model version, but still a critical step toward understanding

the Higgs sector of the Standard Model. For that reason, the detailed treatment presented in these

sections C through F are included in this thesis.

Recall the postulated globally gauge invariant lagrangianfrom section C.

L = (∂µφ)
† (∂µφ)−m2

0φ
†φ− 1

4
λ
(
φ†φ
)2

(D.1)

To make this lagrangian invariant to local gauge transformations, we must replace the derivatives

with “covariant derivatives” to keep the lagrangian invariant under transformation. The covariant

derivative is not derived–we postulate the desired covariant derivative and consider its form to be

justified by the fact that it works

∂µ → Dµ = ∂µ + iqAµ (D.2)

and include a kinetic term for the “gauge field”Aµ that must be included to keep the lagrangian

invariant under a localU(1) transformation.

L = [(∂µ + iqAµ)φ]† [(∂µ + iqAµ)φ]−
1

4
FµνF

µν − 1

4
λ(φ†φ)2 −m2

0(φ
†φ) (D.3)

(D.4)

whereF µν = ∂µAν − ∂νAµ. Notice this part is the form of the Maxwell lagrangian andAµ is

analogous to the photon. We shall return to this point shortly.

This lagrangian is then invariant to alocalU(1) field transformation

φ(x) → φ′(x) = e−iα(x)φ(x) (D.5)

or, in infinitesimal form

φ(x) → φ′(x) = (1− iα(x))φ(x) (D.6)
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We still do not know now the gauge field itself transforms. Thepoint of this covariant derivative

is to haveDµφ transform the same wayφ does. So assume

D′µφ′ = (1− iα(x))Dµφ (D.7)

to be true and derive the transformation law forAµ from it.

(∂µ + iqA′µ)φ′ = (1− iα(x))(∂µ + iqAµ)φ (D.8)

Since this is an infinitesimal transformation, the transformation ofAµ should have a general form

Aµ → A′µ = Aµ+ δAµ. Note that bothα(x) andδAµ are infinitesimals, so any terms infinitesimal

to the2nd order or higher drop.

(∂µ + iqAµ + iqδAµ)(1− iα(x))φ = (1− iα(x))(∂µ + iqAµ)φ (D.9)

(−i∂µα(x) + iqδAµ)φ = (−iα(x)∂µ)φ (D.10)

iqδAµφ = (i∂µα(x)− iα(x)∂µ)φ (D.11)

qδAµφ = ∂µ(αφ)− α(∂µφ) (D.12)

qδAµφ = (∂µα)φ (D.13)

δAµ =
1

q
∂µα (D.14)

Hence, the gauge field transforms as

Aµ(x) → A′µ(x) = Aµ(x) +
1

q
∂µα(x) (D.15)

Now we’ll see how the gauge fieldAµ absorbs the massless bosonθ that was present in the treat-

ment of the globalU(1) case in section C.

Recalling the Maxwell term in the lagrangian, let’s study the field equation forAµ

�Aν − ∂ν(∂µA
µ) = jνem = iq(φ†(∂νφ)− (∂νφ)†φ)− 2q2Aνφ†φ (D.16)

Now recall theU(1) field parametrization for spontaneous symmetry breaking

φ(x) =
v + h(x)√

2
︸ ︷︷ ︸

Radial Perturbation

· e−
i
v
θ(x)

︸ ︷︷ ︸
Angular Perturbation

(D.17)
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The current becomes

jνem = iq

[
1√
2
(v + h)e

i
v
θ(x)

(
1√
2
(v + (∂νh))e−

i
v
θ(x)

)

+
1√
2
(v + h)

(−i
v
(∂νθ)

)

e−
i
v
θ(x)

(D.18)

−
(

1√
2
(v + (∂νh))e

i
v
θ(x) 1√

2
(v + h)

i

v
(∂νθ)e

i
v
θ(x)

)
1√
2
(v + h)e−

i
v
θ(x)

]

(D.19)

− 2q2Aν · 1
2
(v + h)2 (D.20)

jνem = −iq
2

[

(v + h)(v + ∂νh) + (v + h)2
(−i
v
∂νθ

)

(D.21)

− (v + ∂νh)(v + h)− (v + h)2
(
i

v
∂νθ

)]

(D.22)

− q2Aν(v + h)2 (D.23)

(D.24)

jνem = −iq
2

[
2i

v
(v + h)2∂νθ

]

− q2Aν(v + h)2 (D.25)

jνem =
q

v
(v + h)2∂νθ − q2Aν(v + h)2 (D.26)

jνem = −v2q2
(

Aν − ∂νθ

vq

)

+ higher order terms (D.27)

Using only the linear term for the current, put it back into the field equation forAν

�Aν − ∂ν(∂µA
µ) = jνem (D.28)

�Aν − ∂ν(∂µA
µ) = −v2q2

(

Aν − ∂νθ

vq

)

(D.29)

Now recall that a gauge transformation onAµ has the formAµ(x) → A′µ(x) + 1
q
∂µα(x), and

notice that the right hand side already has this form. As such, define

A′ν = Aν − ∂νθ

vq
(D.30)

Then the field equation becomes

�A′ν − ∂ν∂µA
′µ = −v2q2A′ν (D.31)
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(
�+ v2q2

)
A′ν − ∂ν∂µA

′µ = 0 (D.32)

Finally, we see that the field equation becomes a free massivevector field for a particle with mass

vq. In particular, notice how the appropriate choice of gauge allowed the massless gauge fieldAν

to absorb theθ (“Goldstone” boson) field term and become massive as a result.

Summarily, generalizing from global to localU(1) symmetry breaking required us to introduce

a “gauge field”Aν in order to keep the lagrangian invariant, or symmetric, underU(1) transforma-

tions. After deriving the manner in whichAν itself transforms, we were able to choose a particular

“gauge,” orU(1) transformation, that allows it to absorb theθ field (pertubations along the angular

direction of the circular minima manifold of the previous section). In the end, we no longer had a

θ field at all, but rather the gauge fieldAν that became massive after absorbing theθ field. What

has just happened here is important for understanding how the Higgs boson is related to the photon

and weak vector boson in the Standard Model theory.
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Appendix E: SU(2) Global Symmetry Breaking

The “special unitary group”SU(2) transformations we will be considering in this section are

similar to theU(1) case of sections C and D, except that the rotation angleα now becomes rank-2

matrices~α · ~τ .

To recap, globalU(1) symmetry breaking lead to two fields: a massive fieldh(x) and a massless

field θ(x). Extending to localU(1) symmetry required us to introduce a gauge bosonAν and we

exploited the gauge symmetry to haveAν absorb theθ(x) field and become massive. Now, we

will see that by generalizing the same arguments to globalSU(2) symmetry we will end up with

another massiveH(x) field and threeθ(x) fields instead of one.

Consider anSU(2) doublet of complex bosons

φ =




φ+

φ0



 =





1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)



 (E.1)

whereφ+ destroys positively charged particles and creates negatively charged particle, andφ0

destroys neutral particles and creates neutral antiparticles.

Postulate the form of the lagrangian as a direct generalization of the previous two sections

L = (∂µφ)
†(∂µφ)−m2

0φ
†φ− λ

4
(φ†φ)2 (E.2)

wherem2
0 < 0. This lagrangian is not only invariant toSU(2) transformations, but also to the

globalU(1) transformations of section C. We treat the globalSU(2) case here, soα is not depen-

dent on spacetime coordinate.

φ→ φ′ = e−
i
2
~α·~τφ for SU(2) (E.3)

φ→ φ′ = e−iαφ for U(1) (E.4)

The minimum occurs at

∂L
∂(φ†φ)

= −m2
0 −

λ

2
(φ†φ)min = 0 (E.5)

(φ†φ)min =
−2m2

0

λ
≡ v2

2
(E.6)
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As before, we take the minimum to be the vacuum.

〈0 | φ†φ | 0〉 = v2

2
= 〈0 | φ2

1 + φ2
2 + φ2

3 + φ2
4 | 0〉 (E.7)

To obtain the particle spectrum we expand the fieldsφ about the choice of vacuum. Again, rather

than a single point, we have a whole space of minima to choose from. Let,

〈0 | φ | 0〉 =




0

v√
2



 (E.8)

Oscillations about this vacuum choice are parametrized by

φ = e−
i
2
(~θ(x)·~τ)v




0

1√
2
(v +H(x))



 (E.9)

We have here three fields~θ for possible “angular” oscillations associated with theSU(2) symmetry,

and one radial field oscillationH(x). We shall see now that only theH(x) field has nonzero mass,

indicating that each~θ field oscillates in a direction within the minima manifold, i.e. does not climb

the potential just as in the globalU(1) case. To do this, putφ back into the lagrangian and look for

mass terms.

∂µφ =




0

− i
2v
((∂µ~θ) · ~τ)e− i

2v
~θ·~τ 1√

2
(v +H) + e−

i
2v

~θ·~τ 1√
2
∂µH



 (E.10)

= e−
i
2v

~θ·~τ




0

−i

2
√
2v
((∂µ~θ) · ~τ)(v +H) + 1√

2
∂µH



 (E.11)

Similarly,

(∂µφ)† =
[

0 i

2
√
2v
((∂µ~θ) · ~τ )(v +H) + 1√

2
∂µH

]

(E.12)

Putting these terms into the lagrangian, we get:

L =
1

8v2
(∂µ~θ · ~τ )(∂µ~θ · ~τ)(v +H)2 +

1

2
(∂µH)(∂µH)− m2

0

2
v2 − m2

0

2
vH − m2

0

2
H2 − λ

4
(v +H)4

(E.13)
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Mass terms with different fields multiplied govern the interaction between the fields. Notice

now since~θ(x) only appear in an exponent in the fieldφ, it only has derivative terms in the la-

grangian. Thus, the particles associated with the~θ fields are massless. Only theH(x) has a mass

term.
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Appendix F: SU(2) Local Symmetry Breaking

Let’s now generalize theSU(2) global invariance of the previous section to local invariance in

the same manner we did forU(1) transformations in section D.

LocalSU(2) gauge transformations have the form

φ(x) → φ′(x) = e
ig
2
~τ ·~α(x)φ(x) (F.1)

where the factorg is inserted to represent the coupling strength.

Just as in the case of electromagnetic interactions, no lagrangian for a free particle can be

Lorentz invariant under this local gauge transformation. To make it Lorentz invariant, the derivative

must be replaced by a covariant derivative. This way,Dµφ transforms the same wayφ does,

whereas∂µφ does not. Just as in theU(1) case, this will necessarily involve the introduction of

new gauge fields.

In theSU(2) case,

∂µφ′(x) = e
ig
2
~τ ·~α(x)(∂µφ(x)) +

ig

2
~τ · (∂µ~α(x))e ig

2
~τ ·~α(x)φ(x) (F.2)

where it is the second term that breaks the covariance.

The covariant derivativeDµ must act like:

D′µφ′(x) = e
ig
2
~τ ·~α(x)φ(x)Dµφ(x) (F.3)

The form ofDµ is just postulated, then justified by the fact that it works.

Dµ ≡ ∂µ +
ig

2
~τ · ~W µ (F.4)

where ~W µ ≡ (W µ
1 ,W

µ
2 ,W

µ
3 ), a slight precursor to the weak vector bosons.
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The ~W µ are theSU(2) gauge fields, analogous to theU(1) gauge fieldAµ, and the~τ are the

Pauli spin matrices.

~τ · ~W µ =




0 1

1 0



W µ
1 +




0 −i
i 0



W µ
2 +




1 0

0 −1



W µ
3 (F.5)

=




0 W µ

1

W µ
1 0



+




0 −iW µ

2

iW µ
2 0



+




W µ

3 0

0 −W µ
3



 (F.6)

=




W µ

3 W µ
1 − iW µ

2

W µ
1 + iW µ

2 −W µ
3



 (F.7)

Remember that the three gauge fields~W µ are spacetime dependent.

Let’s examine theSU(2) transformation in infinitesimal form

φ′ =

(

1 +
ig

2
~τ · ~ǫ(x)

)

φ (F.8)

∂φ′ =

(

1 +
ig

2
~τ · ~ǫ(x)

)

∂µφ+
ig

2
~τ · (∂µ~ǫ)φ (F.9)

We again see the noncovariant term. Let’s use the covariant derivative instead.

D′µφ′ =

(

1 +
ig

2
~τ · ~ǫ(x)

)

Dµφ (F.10)
(

∂µ +
ig

2
~τ · ~W ′µ

)[

1 +
ig

2
~τ · ~ǫ(x)

]

φ =

[

1 +
ig

2
~τ · ~ǫ(x)

](

∂µ +
ig

2
~τ · ~W µ

)

φ (F.11)

So far, we do not know how the gauge fieldsW µ transform (notice that both~W ′µ and ~W µ ap-

pear). We proceed by assuming that the previous equality does, in fact, hold; and determine the

transformation law for~W µ from it.

The previous equality involves an infinitesimal transformation, so the transformation of~W µ

must look something like

~W µ → ~W ′µ = ~W µ + δ ~W µ (F.12)
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Let’s start the algebra.
[

∂µ +
ig

2
~τ · ~W ′µ

] [

1 +
ig

2
~τ · ~ǫ(x)

]

φ =

[

1 +
ig

2
~τ · ~ǫ(x)

] [

∂µ +
ig

2
~τ · ~W µ

]

φ

(F.13)
[

∂µ +
ig

2
~τ · ~W µ +

ig

2
~τ · δ ~W µ

] [

1 +
ig

2
~τ · ~ǫ(x)

]

φ =

[

1 +
ig

2
~τ · ~ǫ(x)

] [

∂µ +
ig

2
~τ · ~W µ

]

φ

(F.14)
[
ig

2
~τ · ∂µ~ǫ− 1

4
g2(~τ · ~W µ)(~τ · ~ǫ) ig

2
~τ · δ ~W µ

]

φ =

[
ig

2
(~τ · ~ǫ)∂µ − g2

4
(~τ · ~ǫ)(~τ · ~W µ)

]

φ

(F.15)

ig

2
~τ · ∂µ(~ǫφ)− 1

4
g2(~τ · ~W µ)(~τ · ~ǫ)φ+

ig

2
~τ · (δ ~W µ)φ =

ig

2
~τ · (~ǫ∂µφ)− g2

4
(~τ · ~ǫ)(~τ · ~W µ)φ

(F.16)

ig

2
~τ · (δ ~W µ)φ =

ig

2
~τ · [~ǫ(∂µφ)− ∂µ(~ǫφ)] +

g2

4

[

(~τ · ~W µ)(~τ · ~ǫ)− (~τ · ~ǫ)(~τ · ~W µ)
]

φ

(F.17)

ig

2
~τ · (δ ~W µ)φ =

ig

2
~τ · [−(∂µ~ǫ)φ] +

g2

4

[

(~τ · ~W µ)(~τ · ~ǫ)− (~τ · ~ǫ)(~τ · ~W µ)
]

φ (F.18)

ig
~τ · (δ ~W µ)

2
= −ig~τ · (∂

µ~ǫ(x))

2
+ (ig)2

[(
~τ · ~ǫ
2

)(

~τ · ~W µ

2

)

−
(

~τ · ~W µ

2

)(
~τ · ~ǫ
2

)]

(F.19)

~τ · (δ ~W µ) = −~τ · (∂µ~ǫ)− g

2

[

(~τ · ~ǫ)
(

~τ · ~W µ
)

−
(

~τ · ~W µ
)

(~τ · ~ǫ)
]

(F.20)

(F.21)

Let’s take a closer look at the terms inside the brackets alone.
[

(~τ · ~ǫ)
(

~τ · ~W µ
)

−
(

~τ · ~W µ
)

(~τ · ~ǫ)
]

=
(

~ǫ · ~W µ + i~τ · ~ǫ× ~W µ
)

−
(

~W µ · ~ǫ+ i~τ · ~W µ ×~ǫ
)

(F.22)

= i~τ
(

~ǫ× ~W µ − ~W µ ×~ǫ
)

(F.23)

= i~τ
(

~ǫ× ~W µ −~ǫ× ~W µ
)

(F.24)

= 2i~τ ·
(

~ǫ× ~W µ
)

(F.25)
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Let’s put this back into equation F.20.

~τ · (δ ~W µ) = −δµ~ǫ(x)− g
[

~ǫ(x)× ~W µ
]

(F.26)

(F.27)

This means the infinitesimal piece is

δ ~W µ = −∂µ~ǫ(x)− g
[

~ǫ(x)× ~W µ
]

(F.28)

(F.29)

Generalizing from global to local transformations introduces the extra∂µ~ǫ(x) term. Hence, the

gauge fields for a localSU(2) gauge (phase) transform as

~W ′µ = ~W µ − ∂µ~ǫ(x)− g
[

~ǫ(x)× ~W µ
]

(F.30)

(F.31)

Now that we know how the gauge field and the covariant derivative transform with anSU(2)

gauge transformation, we can compute the consequences fromour basic postulated lagrangian

from equation E.2, which can now be repostulated inSU(2) invariant form

L = (Dµφ)
† (Dµφ)−m2

0φ
†φ − λ

4

(
φ†φ
)2 − 1

4
~Wµν · ~W µν (F.32)

where ~Wµν ≡ ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν , where the last term is necessary because of the non-

Abelian nature of theSU(2) group.

Note that ifm2
0 > 0, then we just have a system of four scalar particles of massm0. However,

we are interested in them2
0 < 0 case. Just as for theU(1) case, we want to find the minima of the

potential and find an entire minima manifold.

∂L
∂(φ†φ)

= 0 (F.33)

(φ†φ)min = −2m2
0

λ
=

1

2

(
φ2
1 + φ2

2 + φ2
3 + φ2

4

)
(F.34)
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We must choose some particular point on the minima manifold upon which to expand and calculate

the particle spectrum, so chooseφ1 = φ2 = φ4 = 0 and then we are left with

1

2
φ2
3 =

−2m2
0

λ
(F.35)

φ3 = 2

√

−m2
0

λ
≡ v (F.36)

Then our complex field doublet at this minimum becomes

φmin =
1√
2




φ1 + iφ2

φ3 + iφ4



 =
1√
2




0

v



 (F.37)

Again, completely analogous to theU(1) case, we can parametrize perturbations about this mini-

mum as

φ(x) =
ρ(x)√

2
e

i
v
~τ · ~θ(x) , where (F.38)

ρ(x) =




0

v + h(x)



 (F.39)

This can be see more intuitively when looked at in infinitesimal form.

Nevertheless, we now have anSU(2) gauge invariant lagrangian with covariant derivatives and

we know how the introduced gauge fields~W µ change with anSU(2) transformation. As such, the

massless~θ(x) fields can be gauged away and we are left with massive~W µ andh fields, another

example of the Higgs mechanism.

For Standard Model physics, we will be combining this effectfor both theU(1) andSU(2)

cases to get the massive weak vector bosons and the photon–the higgs will be a necessary conse-

quence. More details will be worked out in sections G, H, and J.
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Appendix G: The Higgs Mechanism in theSU(2) × U(1) Local
Spontaneous Symmetry Breaking

Recall that we had a scalarSU(2) doublet

φ =




φ+

φ0



 (G.1)

whose lagrangian is

L = (∂µφ)
†(∂µφ)−m2

0φ
†φ− λ

4
(φ†φ)2 (G.2)

This lagrangian is invariant toU(1) global transformations

φ→ φ′ = e−iαφ (G.3)

and globalSU(2) transformations

φ→ φ′ = e−
i
2
~α·~τφ (G.4)

For a theory that is invariant to local transformations we must introduce threeSU(2) gauge

fields (see section F) and oneU(1) gauge field (see section D). Denote them here asW µ
i (x)

for i = 1, 2, 3 andBµ(x), respectively. Also, the derivatives must be replaced witha covariant

derivative for bothU(1) andSU(2).

Dµφ =






∂µ +

ig

2
~τ · ~W µ

︸ ︷︷ ︸

SU(2)piece

+
ig′

2
Bµ

︸ ︷︷ ︸

U(1)piece






φ (G.5)

Kinetic terms for the new gauge fields must also be included.

~F µν = ∂µ ~W ν − ∂ν ~W µ − g ~W µ × ~W ν (G.6)

Gµν = ∂µBν − ∂νBµ (G.7)

So the new full lagrangian is

L = (Dµφ)
† (Dµφ) +m2

0φ
†φ− λ

4

(
φ†φ
)2 − 1

4
~Fµν · ~F µν − 1

4
GµνG

µν (G.8)

(G.9)
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We already looked at spontaneous symmetry breaking for theU(1) andSU(2) cases individ-

ually, now we want to do so for the product groupSU(2) × U(1) in such a way that we are left

with three massive gauge bosons (W±, Z) and one massless gauge boson (the photonγ). Being

massless, the photon corresponds to some symmetry that is left unbroken. Weinberg suggested

[12]

〈0 | φ | 0〉 =




0

√
2m0√
λ



 ≡




0

v√
2



 (G.10)

This choice leaves the vacuum invariant to a transformationof U(1)+ third component ofSU(2).

That is,

(1 + τ3)〈0 | φ | 0〉 = (1 + τ3)




0

v√
2



 =




2 0

0 0








0

2√
2



 =




0

0



 (G.11)

where the~τ are the Pauli matrices. This is also why we eventually find theelectric charge to be

expressed in terms of weak hyperchargeY and third component of isospint3: Q = Y
2
+ t3 [25].

We are about to see that this interplay between theU(1) symmetry (corresponding toY ) and the

third component ofSU(2) symmetry (corresponding tot3) manifests as a mixing of theW µ
3 and

Bµ gauge fields to yield the photon fieldAµ and the neutral weak vector bosonZ.

To consider oscillations about the vacuum, parametrize thedegrees of freedom by

φ = e−
i
2v

~θ(x)·~τ




0

1√
2
(v +H(x))



 (G.12)

However, recall that the three~θ field perturbations, which would become Goldstone bosons, dis-

appear if we make the appropriate gauge transformation. So we effectively use

φ =




0

1√
2
(v +H(x))



 (G.13)

The consequences for the lagrangian are (details of how the following form of the lagrangian are

calculated are in section J)

L =
1

2
(∂µH)(∂µH) +

m2
0

2
(v +H)2 − λ

16
(v +H)4 − 1

4
~Fµν · ~F µν − 1

4
GµνG

µν (G.14)
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L =
1

2
(∂µH)(∂µH) +

m2
0

2
(v +H)2 − λ

16
(v +H)4 (G.15)

− 1

4
(∂µW1ν − ∂νW1µ)(∂

µW ν
1 − ∂νW µ

1 ) +
1

8
g2v2W1νW

ν
1 (G.16)

− 1

4
(∂µW2ν − ∂νW2µ)(∂

µW ν
2 − ∂νW µ

2 ) +
1

8
g2v2W2νW

ν
2 (G.17)

− 1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂νW µ

3 )−
1

4
GµνG

µν (G.18)

+
1

8
v2(gW3µ − g′Bµ)(gW

µ
3 − g′Bµ) + Higgs interactions (G.19)

The second and third lines show that theW1 andW2 gauge fields are massive and have the same

massmW = gv

2
. These are theW+,W− vector gauge bosons in electroweak theory. The Higgs

interaction terms are being ignored here because we are focusing on the generation of the Standard

Model gauge bosons in this section. In section J, I will go through the details of deriving the full

version of this and discuss the interactions between the Higgs and gauge bosons that are produced.

The Higgs boson decaying to gauge bosons is precisely the kind of interaction that this dissertation

explores experimentally.

The last two lines show that the gauge fieldsW3 andB are mixed. The key clue is to notice in

the last line it is the combination(gW µ
3 −g′Bµ) that has a mass. Introduce the linear combinations

Zµ ≡W µ
3 cos θW − Bµ sin θW (G.20)

Aµ ≡W µ
3 sin θW +Bµ cos θW (G.21)

where

cos θW =
g

√

g2 + g′2
(G.22)

sin θW =
g′

√

g2 + g′2
(G.23)

Or, if we invert them

Bµ = Aµ cos θW − Zµ sin θW (G.24)

W µ
3 = Aµ sin θW + Zµ cos θW (G.25)
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Using this, we can write the last two lines of the lagrangian in terms ofAµ andZµ, instead of

Bµ andW µ
3 .

− 1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂νW µ

3 )−
1

4
GµνG

µν +
v2

8
(gW3µ − g′Bµ)(gW

µ
3 − g′Bµ)

(G.26)

= −1

4
(∂µ(Zν cos θW + Aν sin θW )− ∂ν(Zµ cos θW + Aµ sin θW )) (G.27)

· (∂µ(Zν cos θW + Aν sin θW )− ∂ν(Zµ cos θW + Aµ sin θW )) (G.28)

− 1

4
(∂µ(Aν cos θW − Zν sin θW )− ∂ν(Aµ cos θW − Zµ sin θW )) (G.29)

· (∂µ(Aν cos θW − Zν sin θW )− ∂ν(Aµ cos θW − Zµ sin θW )) (G.30)

+
1

8
v2 (g(Zµ cos θW + Aµ sin θW )− g′(Aµ cos θW − Zµ sin θW )) (G.31)

· (g(Zµ cos θW + Aµ sin θW )− g′(Aµ cos θW − Zµ sin θW )) (G.32)

= −1

4
((∂µZν − ∂νZµ) cos θW + (∂µAν − ∂νAµ) sin θW ) (G.33)

· ((∂µZν − ∂νZµ) cos θW + (∂µAν − ∂νAµ) sin θW ) (G.34)

− 1

4
((∂µAν − ∂νAµ) cos θW − (∂µZν − ∂νZµ) sin θW ) (G.35)

· ((∂µAν − ∂νAµ) cos θW − (∂µZν − ∂νZµ) sin θW ) (G.36)

+
1

8
v2 (Zµ(g cos θW + g′ sin θW ) + Aµ(g sin θW − g′ cos θW )) (G.37)

· (Zµ(g cos θW + g′ sin θW ) + Aµ(g sin θW − g′ cos θW )) (G.38)

DefineFµν ≡ ∂µAν − ∂νAµ andZµν ≡ ∂µZν − ∂νZµ.

= −1

4
(Zµν cos θW + Fµν sin θW )(Zµν cos θW + Fµν sin θW ) (G.39)

− 1

4
(Fµν cos θW − Zµν sin θW )(Fµν cos θW − Zµν sin θW ) (G.40)

1

8
v2

(

Zµ

g2 + g′2
√

g2 + g′2
+ Aµ

gg′ − g′g
√

g2 + g′2

)

·
(

Zµ g2 + g′2
√

g2 + g′2
+ Aµ gg

′ − g′g
√

g2 + g′2

)

(G.41)

= −1

4
(ZµνZ

µν + FµνFµν) +
1

8
v2ZµZ

µ(g2 + g′
2
) (G.42)
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Hence, we have unmixed the two fields. They become theZ boson and the photon.

mZ =
1

2
v2
√

g2 + g′2 =
mW

cos θW
(G.43)

mA = 0 (G.44)

Now that we have our lagrangian in a usable form, we can finallystarting calculating the

characteristics of Standard Model particles.
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Appendix H: The SU(2)L × U(1)Y Local Gauge Invariant La-
grangian and the [massless] Fermions

We know now from section G what our postulated lagrangian should look like in order to be

bothU(1) andSU(2) invariant, which necessarily involved the weak vector bosons and the photon.

Let’s look atSU(2) × U(1) gauge invariance for the first generation of quarks; the calcuation is

identical for the higher generations. The calculation for the lepton generations is also very similar

and so not repeated in this dissertation.

The Higgs mechanism isnot included here so the quarks will still be massless; that willbe

dealt with in section I. Instead, we will deal with fermions that appear as a left-handed doublet and

right-handed singlets for both particles. In the end, we will have computed the lagrangian that tells

us how these fermions interact with each other, the weak vector gauge bosons, and the photon. The

mass terms will, in the absence of the Higgs mechanism, be also absent for this section.

Suppose we have the (fermion) quark doublet

q =




u

d



 (H.1)

and recall that

ψL =

(
1− γ5

2

)

ψ (H.2)

ψR =

(
1 + γ5

2

)

ψ (H.3)

are relations distinguishing the left and right handed components.

As always, we must postulate a lagrangian. In the sections exploringU(1) andSU(2) symme-

tries, we used generalizations of the Klein-Gordon equation’s lagrangian for scalar particles. Now

we want to look at spin-1/2 fermions, so we must use the Dirac lagrangian in our gauge invariant

form. This is why I want to explore the case of massless fermions before adding in mass generation

from the Higgs mechanism.[25]

Recall the Dirac lagrangian

L = iψ̄γµ∂
µψ −mψ̄ψ (H.4)
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Now we want a massless version for a fermion doublet:

L = q̄iD/q (H.5)

L = q̄LiD/LqL + ūRiD/RuR + d̄RiD/RdR (H.6)

where the covariant derivative for the doubletD/L is SU(2)× U(1) invariant, andD/R is onlyU(1)

invariant for the singlet:

Dρ
L = ∂ρ +

ig

2
~τ · ~W ρ +

ig′Y

2
Bρ (H.7)

Dρ
R = ∂ρ +

ig′Y

2
Bρ (H.8)

H.1 TheLR terms

LR = ūRiD/ uR + d̄RiD/ dR (H.9)

= ūRiγρ

(

∂ρ − ig′Y

2
Bρ

)

uR + d̄Riγρ

(

∂ρ − ig′Y

2
Bρ

)

dR (H.10)

= iūRγρ(∂
ρuR)−

g′Y

2
ūRγρB

ρuR + id̄Rγρ(∂
ρdR)−

g′Y

2
d̄RγρB

ρdR (H.11)

= iu†Rγ0γρ(∂
ρuR)−

g′Y

2
u†Rγ0γρB

ρuR + id†Rγ0γρ(∂
ρdR)−

g′Y

2
d†Rγ0γρB

ρdR (H.12)

= iu†
(
1 + γ5

2

)

γ0γρ

(
1 + γ5

2

)

(∂ρu)− g′Y

2
u†
(
1 + γ5

2

)

γ0γρB
ρ

(
1 + γ5

2

)

u

(H.13)

+ id†
(
1 + γ5

2

)

γ0γρ

(
1 + γ5

2

)

(∂ρd)− g′Y

2
d†
(
1 + γ5

2

)

γ0γρB
ρ

(
1 + γ5

2

)

d

(H.14)

(H.15)

Use the fact thatγ5 anticommutes with the otherγµ’s, so{γ5, γµ} = 0 ⇒
(
1+γ5
2

)
γµ =

(
γµ+γ5γµ

2

)
=

(
γµ+(−γµγ5)

2

)

= γµ
(
1−γ5
2

)
. Also, note that after

(
1+γ5
2

)
commutes pastγ0γρ,

(
1+γ5
2

) (
1+γ5
2

)
=
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(
1+γ5
2

)
.

⇒ LR = iūγρ

(
1 + γ5

2

)

(∂ρu)− g′Y

2
ūγρB

ρ

(
1 + γ5

2

)

u (H.16)

+ id̄γρ

(
1 + γ5

2

)

(∂ρd)− g′Y

2
d̄γρB

ρ

(
1 + γ5

2

)

d (H.17)

We will return to these terms later.

H.2 TheLL terms

LL = q̄LiD/ qL (H.18)

As before, note that̄uL = u†
(
1−γ5
2

)
γ0 and also that

q̄L =




uL

dL



 =
[

ūL d̄L

]

(H.19)

LL =
[

ūL d̄L

]

iγρD
ρ




uL

dL



 (H.20)

=
[

ūL d̄L

]

iγρ

(

∂ρ +
ig

2
~τ · ~W ρ +

ig′Y

2
Bρ

)



uL

dL



 (H.21)

= i
[

ūL d̄L

]

γρ∂
ρ




uL

dL





︸ ︷︷ ︸
II.A

− g

2

[

ūL d̄L

]

γρ~τ · ~W ρ




uL

dL





︸ ︷︷ ︸
II.B

−
[

ūL d̄L

] g′Y

2
γρB

ρ




uL

dL





︸ ︷︷ ︸

II.C

(H.22)
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II.A The Derivative Terms

i
[

ūL d̄L

]

γρ∂
ρ




uL

dL



 = i
[

ūL d̄L

]




∂/uL

∂/dL



 (H.23)

= iūL∂/uL + id̄L∂/dL (H.24)

= iu†
(
1− γ5

2

)

γ0γρ

(
1− γ5

2

)

(∂ρu) + id†
(
1− γ5

2

)

γ0γρ

(
1− γ5

2

)

(∂ρd)

(H.25)

= iu†γ0

(
1 + γ5

2

)

γρ

(
1− γ5

2

)

(∂ρu) + id†γ0

(
1 + γ5

2

)

γρ

(
1− γ5

2

)

(∂ρd)

(H.26)

= iu†γ0γρ

(
1− γ5

2

)2

(∂ρu) + id†γ0γρ

(
1− γ5

2

)2

(∂ρd) (H.27)

= iu†γ0γρ

(
1− γ5

2

)

(∂ρu) + id†γ0γρ

(
1− γ5

2

)

(∂ρd) (H.28)

= iūγρ

(
1− γ5

2

)

(∂ρu) + id̄γρ

(
1− γ5

2

)

(∂ρd) (H.29)

II.B TheW,W †,W3 TermsThe key here is to express

1

2
~τ · ~W µ =

1

2
[τ1W

µ
1 + τ2W

µ
2 + τ3W

µ
3 ] (H.30)

=
1√
2

[

τ+

(
W µ

1 − iW µ
2√

2

)

τ−

(
W µ

1 + iW µ
2√

2

)]

+
1

2
τ3W

µ
3 (H.31)

=
1√
2

[
τ+W

µ + τ−W
†
µ

]
+

1

2
τ3W

µ
3 (H.32)

Where we denote

τ+ ≡ 1

2
(τ1 + iτ2) =

1

2








0 1

1 0



+ i




0 −i
i 0







 =
1

2




0 2

0 0



 =




0 1

0 0



 (H.33)

τ− ≡ 1

2
(τ1 − iτ2) =

1

2








0 1

1 0



− i




0 −i
i 0







 =
1

2




0 0

2 0



 =




0 0

1 0



 (H.34)

W µ ≡ W µ
1 − iW µ

2√
2

(H.35)

W µ† ≡ W µ
1 + iW µ

2√
2

(H.36)
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The reason we want to do this is for the following:

1√
2
τ+W

µ




uL

dL



 =
1√
2




0 W µ

0 0








uL

dL



 =
1√
2




W µdL

0



 =
W µ

√
2




dL

0



 (H.37)

1√
2
τ+W

µ†




uL

dL



 =
1√
2




0 0

W µ† 0








uL

dL



 =
1√
2




0

W µ†uL



 =
W µ

√
2




0

uL



 (H.38)

Notice how theuL anddL fields switch positions in the vector. This is what will subsequently

allow interactions between these fields via the gauge bosonsW µ.

Lastly,

1

2
τ3W

µ
3




uL

dL



 =
1

2




1 0

0 −1








W µ

3 uL

W µ
3 dL



 =
1

2




W µ

3 uL

−W µ
3 dL



 =
W µ

3

2




uL

−dL



 (H.39)

Now we are ready to return to the term II.B from the lagrangian.

g

2

[

ūL d̄L

]

γρ~τ · ~W ρ




uL

dL



 (H.40)

= g
[

ūL d̄L

]

γρ

(
1

2
τ+(W

ρ
1 − iW ρ

2 ) +
1

2
τ−(W

ρ
1 + iW ρ

2 ) +
1

2
τ3W

ρ
3

)



uL

dL





(H.41)

= g
[

ūL d̄L

]

γρ

(
1√
2
τ+W

ρ +
1√
2
τ−W

ρ† +
1

2
τ3W

ρ
3

)



uL

dL



 (H.42)

= g
[

ūL d̄L

]

γρ




1√
2
W ρ




dL

0



+
1√
2
W ρ†




0

uL



+
1

2
W ρ

3




uL

−dL







 (H.43)

=
1√
2
g
[

ūL d̄L

]




W/ ρdL

0




1√
2
g
[

ūL d̄L

]




0

W/ †ρuL




1

2
g
[

ūL d̄L

]




W/ ρ

3uL

−W/ ρ

3dL





(H.44)

=
1√
2
gūLW/

ρdL +
1√
2
gd̄LW/

†ρuL +
1

2
gūLW/

ρ
3uL +

1

2
gd̄L (−W/ ρ

3dL) (H.45)

(H.46)
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g

2

[

ūL d̄L

]

γρ~τ · ~W ρ




uL

dL



 (H.47)

=
1√
2
gu†Lγ0γρW

ρdL +
1√
2
gd†Lγ0γρW

ρ†uL +
1

2
gu†Lγ0γρW

ρ
3 uL − 1

2
gd†Lγ0γρW

ρ
3 dL

(H.48)

=
1√
2
gu†

(
1− γ5

2

)

γ0γρW
ρ

(
1− γ5

2

)

d+
1√
2
gd†
(
1− γ5

2

)

γ0γρW
ρ†
(
1− γ5

2

)

u

(H.49)

+
1

2
gu†

(
1− γ5

2

)

γ0γρW
ρ
3

(
1− γ5

2

)

u− 1

2
gd†
(
1− γ5

2

)

γ0γρW
ρ
3

(
1− γ5

2

)

d

(H.50)

=
1√
2
gūγρW

ρ

(
1− γ5

2

)

d+
1√
2
gd̄γρW

ρ†
(
1− γ5

2

)

u (H.51)

+
1

2
gūγρW

ρ
3

(
1− γ5

2

)

u− 1

2
gd̄γρW

ρ
3

(
1− γ5

2

)

d (H.52)

It is important to note that while these terms do describe quark interactions, the vertex factors

here are not in their final Standard Model form. There are still the CKM matrix elements that

govern the strength of the interactions to deal with. The proper form with the CKM matrix elements

follows directly from the presence of the Higgs field and is therefore excluded from this section.

That problem requires separate treatment.
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II.C TheBρ Field Terms

[

ūL d̄L

]g′Y

2
γρB

ρ




uL

dL



 (H.53)

=
g′Y

2

[

ūL d̄L

]




B/ uL

B/ dL



 (H.54)

=
g′Y

2

[
ūLB/ uL + d̄LB/ dL

]
(H.55)

=
g′Y

2

[

u†Lγ0γρB
ρuL + d†Lγ0γρB

ρdL

]

(H.56)

=
g′Y

2

[

u†
(
1− γ5

2

)

γ0γρB
ρ

(
1− γ5

2

)

u+ d†
(
1− γ5

2

)

γ0γρB
ρ

(
1− γ5

2

)

d

]

(H.57)

=
g′Y

2

[

ūγρ

(
1− γ5

2

)

Bρu+ d̄γρ

(
1− γ5

2

)

Bρd

]

(H.58)

H.3 Find the Z-boson and Photon Interactions

The next task is to mix these terms with theW µ
3 terms from before to yield the photon and

Z-boson interactions with the quarks. Note that the work of mixing these fields intoAµ andZµ

was done in G. So we are going to collect theBρ andW ρ
3 terms from II.A, II.B, and II.C, then

switch to expressing those terms withAµ andZµ instead. This will yield quark interactions with

the photon andZ-boson. Afterward, we will collect all the terms of the lagrangian and express it

in a manner that elucidates the electroweak physics of quarks.
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−g
′Y

2
ūγρB

ρ

(
1 + γ5

2

)

u− g′Y

2
d̄γρB

ρ

(
1 + γ5

2

)

d (H.59)

−1

2
gūγρW

ρ
3

(
1− γ5

2

)

u+
1

2
gd̄γρW

ρ
3

(
1− γ5

2

)

d (H.60)

−g
′Y

2
ūγρ

(
1− γ5

2

)

Bρu− g′Y

2
d̄γρ

(
1− γ5

2

)

Bρd (H.61)

= −g
′Y

2
ūγρ

(
1 + γ5

2

)

u(−Zρ sin θW + Aρ cos θW ) (H.62)

− g′Y

2
d̄γρ

(
1 + γ5

2

)

d(−Zρ sin θW + Aρ cos θW ) (H.63)

− g

2
ūγρ

(
1− γ5

2

)

u(Zρ cos θW + Aρ sin θW ) (H.64)

+
g

2
d̄γρ

(
1− γ5

2

)

d(Zρ cos θW + Aρ sin θW ) (H.65)

− g′Y

2
ūγρ

(
1− γ5

2

)

u(−Zρ sin θW + Aρ cos θW ) (H.66)

− g′Y

2
d̄γρ

(
1− γ5

2

)

d(−Zρ sin θW + Aρ cos θW ) (H.67)
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UseY = 1/3 for uL; Y = 4/3 for uR; Y = 1/3 for dL; andY = −2/3 for dR [12].

= −2g′

3
ūγρ

(
1 + γ5

2

)

u(−Zρ sin θW + Aρ cos θW ) (H.68)

+
g′

3
d̄γρ

(
1 + γ5

2

)

d(−Zρ sin θW + Aρ cos θW ) (H.69)

− g

2
ūγρ
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2

)

u(Zρ cos θW + Aρ sin θW ) (H.70)

+
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2
d̄γρ
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2

)

d(Zρ cos θW + Aρ sin θW ) (H.71)

− g′

6
ūγρ

(
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2

)

u(−Zρ sin θW + Aρ cos θW ) (H.72)
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d̄γρ
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2

)

d(−Zρ sin θW + Aρ cos θW ) (H.73)

=
2g′

3
ūγρ

(
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2

)

u(Zρ sin θW )− 2g′

3
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(
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2

)

u(Aρ cos θW ) (H.74)
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3
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(
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2

)
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3
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)
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+ ūγρ
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)
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+ ūγρ
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)
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(
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2
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)
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1

2
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6
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(H.78)
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(
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2

)

dAρ

(
1

2
g sin θW − 1

6
g′ cos θW
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(H.79)

(H.80)
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Now useg′ = g sin θW
cos θW

in all terms.

=
2

3
ūγρ

(
1 + γ5

2

)

uZρ

(

g
sin θW
cos θW

sin θW

)

(H.81)

− 2

3
ūγρ

(
1 + γ5

2

)

uAρ (g sin θW ) (H.82)

− 1

3
d̄γρ

(
1 + γ5

2

)

d Zρ

(

g
sin θW
cos θW

sin θW

)

(H.83)

+
1

3
d̄γρ

(
1 + γ5

2

)

d Aρg sin θW (H.84)

ūγρ

(
1− γ5

2

)

uZρ

(

−1

2
g cos θW +

1

6
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sin θW
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(H.85)

ūγρ
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2
g sin θW − 1

6
g sin θW
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(H.86)
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1

2
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6
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(H.87)
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)
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1

2
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6
g sin θW
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=
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3
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2

)
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)

− 2g

3
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)
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)
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+
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)
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(
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(H.92)
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3
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)

uAρ sin θW (H.93)

+
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1

3
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+
g

3
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(
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2

)
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Use these trigonometric relations,

− cos2 θW +
1

3
sin2 θW = −1 +

4

3
sin2 θW (H.96)

cos2 θW +
1

3
sin2 θW = 1− 2

3
sin2 θW (H.97)

(
1− γ5

2

)

+

(
1 + γ5

2

)

= 1 (H.98)

and the electric charge defined ase0 = g sin θW in recollecting all the terms of the lagrangian,

which now has the form:

L = iūγρ

(
1 + γ5

2

)

(∂ρu) + id̄γρ

(
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2

)
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)
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)

(∂ρd)

(H.99)

+
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+
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3
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+ ūγρ
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u

(
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3
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d

(
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2

3
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(H.102)

− 2e0
3
ūγρuA

ρ +
e0
3
d̄γρdA

ρ (H.103)

(H.104)
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Appendix I: The Higgs Mechanism and Fermion Mass Genera-
tion

Recall from section H that the kinetic part of a free Dirac fermion does not mix the left and

right components of the field:

ψ̄γµ∂
µψ = ψ̄Rγµ∂

µψR + ψ̄Lγµ∂
µψL (I.1)

Because of this, we can gauge the left and right handed components differently. Weak interactions

are parity violating in the Standard Model and theSU(2)L covariant derivative acts only on the

left-handed term. However, a Dirac mass term has the form

−m
(
ψ̄LψR + ψ̄RψL

)
(I.2)

when we write the left and right handed components separately. So the components are coupled,

meaning any such mass term breaksSU(2)L gauge invariance.

In a theory with spontaneous symmetry breaking, there is a way of giving mass to fermions

without explicitly introducing gauge invariance breakingmass terms in the lagrangian. Consider

the electronSU(2)L doublet

l =




ν

e





L

(I.3)

the Higgs doublet

φ =




φ+

φ0



 (I.4)

φ+ =
1√
2
(φ1 − iφ2) (I.5)

φ0 =
1√
2
(φ3 − iφ4) (I.6)

and the right handed electron singlet in a Yukawa model.

Le = −gel̄LφeR − geēRφ
†lL (I.7)
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It is important to notice that the structure of these terms has twoSU(2)L doublets multiplied to

form anSU(2)L scalar(l̄Lφ, φ†l), and that scalar multiplies theSU(2)L scalar R-component. So

this lagrangian isSU(2)L invariant and the symmetry is preserved.[12]

Recall from section G that the vacuum expectation value of the Higgs doublet assumes the

value

〈0 | φ | 0〉 =




0

v√
2



 (I.8)

but that section dealt with a scalar Klein-Gordon particle.The consequence for a fermion doublet

in this lagrangian is

Le = −gel̄LφeR − geēRφ
†lL (I.9)

= −ge




νL

eL



φeR − geēRφ
†




νL

eL



 (I.10)

= −ge
[

ν̄L ēL

]




φ+

φ0



 eR − geēR

[

φ+ φ0

]




νL

eL



 (I.11)

= −ge(ν̄Lφ+ + ēLφ
0)eR − geēR(φ

+νL + φ0eL) (I.12)

= −ge
[
ν̄Lφ

+eR + ēLφ
0eR + ēRφ

+νL + ēRφ
0eL
]

(I.13)

Take on the vacuum expectation values.

〈0 | Le | 0〉 = −ge




ν̄L 〈0 | φ+ | 0〉

︸ ︷︷ ︸
=0

eR + ēL 〈0 | φ0 | 0〉
︸ ︷︷ ︸

v√
2

eR + ēR 〈0 | φ+ | 0〉
︸ ︷︷ ︸

=0

νL + ēR 〈0 | φ0 | 0〉
︸ ︷︷ ︸

v√
2

eL






(I.14)

= −gev√
2
[ēLeR + ēReL] (I.15)

This is exactly a Dirac mass withme =
gev√
2
. That was precisely the vacuum. Now let’s see that

if we consider also oscillations about the vacuum we generate a coupling between the electron and

the Higgs field. In the last line, usev +H instead of justv.
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〈0 | Le | 0〉 = −gev√
2
[ēL(v +H)eR + ēR(v +H)eL] (I.16)

= −gev√
2
[vēLeR + ēLHeR + vēReL + ēRHeL] (I.17)

= −gev√
2
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(I.18)

+ ve†
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2

)

e

]

(I.19)

= −gev√
2

[

vē

(
1 + γ5

2

)

e+ ēHe

(
1 + γ5

2

)

+ vē

(
1− γ5

2

)

e+ ēHe

(
1− γ5

2

)]

(I.20)

= −gev√
2

[

vēe
︸︷︷︸

Dirac electron mass

+ ēHe
︸︷︷︸

electron-Higgs coupling

]

(I.21)

Notice for the coupling term

(−ge√
2

)

ēHe =

(

−me

v

)

ēHe =

(

− gme

2mW

)

ēHe (I.22)

So in addition to interations of the formf f̄ → (γ orZ0) → W+W− we also have the possibility

f f̄ → H →W+W−. The presence of the fermion mass in the coupling to the Higgsis significant.

We must now recall that if anSU(2) doublet transforms as

l′ = e
i
2
~α·~τ l (I.23)

then the charge conjugate states

iτ2




u∗

d∗



 (I.24)
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transform the same way. So then the charge conjugate of the Higgs field is

φc = iτ2φ
∗ (I.25)

= i




0 −i
i 0








φ+

φ0





∗

(I.26)

=




0 1

−1 0









1√
2
(φ1 − iφ2)

∗

1√
2
(φ3 − iφ4)

∗



 (I.27)

=




0 1

−1 0









1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)



 (I.28)

=





1√
2
(φ3 + iφ4)

− 1√
2
(φ1 + iφ2)



 (I.29)

≡




φ0†

−φ−



 (I.30)

φc is also anSU(2) doublet which transforms the same wayφ does.

Note that in the use of theφ Higgs doublet we could not use the termsl̄LφνR or ν̄Rφ†lL in the

lagrangian (νR has replacedeR) because it leads to unphysical termsēLνR and ν̄ReL. With the

Higgs conjugate field doubletφc we may includēlLφcνR and ν̄Rφ†
clL terms (but not̄lLφceR and

ēRφ
†
clL terms for the same reasons just discussed) which yield Diracmasses for the neutrinos as

well as Higgs interactions. Observe,

Lν = −gν
[

l̄LφνR + ν̄Rφ
†lL

]

(I.31)

= −gν
[[

ν̄L ēL

]




φ0†

−φ−



 νR +
[

φ0 −φ−†
]




νL

eL





]

(I.32)

= −gν
[(

ν̄Lφ
0† − ēLφ

−
)

νR + ν̄R

(

φ0νL − φ−†
eL

)]

(I.33)

= −gν
[

ν̄Lφ
0†νR − ēLφ

−νR + ν̄Rφ
0νL − ν̄Rφ

−†
eL

]

(I.34)
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Take the vacuum expectation value and allφ− terms vanish. Theφ0 factors become1√
2
(v + H)

again.

〈0 | Lν | 0〉 = − gν√
2

[

ν̄L(v +H)νR + ν̄R(v +H)νL

]

(I.35)

= − gν√
2

[

vν̄LνR + vν̄RνL
︸ ︷︷ ︸

Dirac Mass

+ ν̄LHνR + ν̄RHνL
︸ ︷︷ ︸

ν-Higgs Interaction

]

(I.36)

= − gν√
2

[

vν̄ν + ν̄Hν

]

(I.37)

Summarily, to give the electron-neutrinoSU(2) doublet mass (as well as the other lepton and

quark doublets), we are adding more terms to the lagrangian derived at the end of section H of the

form:

Lf,Higgs =
∑

l=e,µ,τ

[

− gl√
2

[

vl̄l + l̄Hl

]

− gνl√
2

[

vν̄lνl + ν̄lHνl

]]

(I.38)

for the three lepton generations and similar terms for the three quark doublets. Because of the

Higgs mechanism, we now have sensible masses for Standard Model particles.
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Appendix J: The Higgs Sector in Standard Model Electroweak
Physics

Let’s refer back to section G, line G.15. We shall now see the details of how we go from the

postulatedSU(2) × U(1) invariant lagrangian for a scalar particle to a form that determines the

physics it implies.

Recall the lagrangian for the (scalar) Higgs sector is

L = (Dµφ)
† (Dµφ) +m2

0φ
†φ− λ

4

(
φ†φ
)2 − 1

4
~Fµν · ~F µν − 1

4
GµνG

µν (J.1)

(J.2)

for

~F µν = ∂µ ~W ν − ∂ν ~W µ − g ~W µ × ~W ν (J.3)

Gµν = ∂µBν − ∂νBµ (J.4)

Dµφ =






∂µ +

ig

2
~τ · ~W µ

︸ ︷︷ ︸

SU(2)piece

+
ig′

2
Bµ

︸ ︷︷ ︸

U(1)piece






φ (J.5)

Consider only the first term for now.

(Dµφ)†(Dµφ) =

(

∂µφ+
ig

2
~τ · ~Wµφ+

ig′Y

2
Bµφ

)†(

∂µφ+
ig

2
~τ · ~W µφ+

ig′Y

2
Bµφ

)

(J.6)

= (∂µφ)
†(∂µφ) (J.7)

+ (∂µφ)
†
(
ig

2
~τ · ~W µφ+

ig′Y

2
Bµφ

)

+

(
ig

2
~τ · ~Wµφ+

ig′Y

2
Bµφ

)†
(∂µφ)

(J.8)

+

[
ig

2
~τ · ~Wµφ+

ig′Y

2
Bµφ

]†[
ig

2
~τ · ~W µφ+

ig′Y

2
Bµφ

]

(J.9)
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Now let’s work on the last line of this. Note that in my expression of the Higgs doublet I’ll be

skipping straight to vacuum expectation values.

ig

2
~τ · ~Wµφ+

ig′Y

2
Bµφ =

ig

2

[



0 1

1 0



W1µ +




0 −i
i 0



W2µ +




1 0

0 −1



W3µ

]



0

1√
2
(v +H)





(J.10)

+
ig′Y

2
Bµ




0

1√
2
(v +H)



 (J.11)

=
ig

2

[




1√
2
W1µ(v +H)

0



+





−i√
2
W2µ(v +H)

0



+




0

−1√
2
W3µ(v +H)





]

(J.12)

+




0

ig′Y
2
√
2
Bµ(v +H)



 (J.13)

=





ig

2
√
2
W1µ(v +H) + g

2
√
2
W2µ(v +H)

−ig

2
√
2
W3µ(v +H) + ig′Y

2
√
2
Bµ(v +H)



 (J.14)

=





ig

2
(W1µ − iW2µ)

1√
2
(v +H)

− ig

2
W3µ

1√
2
(v +H) + ig′Y

2
Bµ

1√
2
(v +H)



 (J.15)
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Next, multiply this by it’s Hermitian conjugate from the left:

[

− ig

2
(W1µ + iW2µ)

1√
2
(v +H) ig

2
W3µ

1√
2
(v +H)− ig′Y

2
Bµ

1√
2
(v +H)

]

(J.16)




ig

2
(W µ

1 − iW µ
2 )

1√
2
(v +H)

− ig

2
W µ

3
1√
2
(v +H) + ig′Y

2
Bµ 1√

2
(v +H)



 (J.17)

=
g2

4
|W1 − iW2|2

1

2
(v +H)2 +

g2

4
|W3|2

1

2
(v +H)2 − gg′Y

4
W3µB

µ1

2
(v +H)2 (J.18)

− gg′Y

4
W µ

3 Bµ

1

2
(v +H)2 +

g′2Y 2

4
|B|21

2
(v +H)2 (J.19)

=
g2

4
W †

µW
µv2 +

g2

2
W †

µWµvH +
g2

4
W †

µW
µH +

g2

8
|W3|2v2 +

g2

4
|W3|2vH +

g2

8
|W3|2H2

(J.20)

− gg′Y

4
W3µB

µv2 − gg′Y

2
W3µB

µvH − gg′Y

2
W3µB

µH2 (J.21)

+
g′2Y 2

8
|B|2v2 + g′2Y 2

4
|B|2vH +

g′2Y 2

8
|B|2H2 (J.22)

Now we have mass terms for the gauge boson fields and interaction terms among the gauge and

Higgs bosons. With that done, let’s go back and deal with the terms from lines J.7 and J.8.

(∂µφ)
†(∂µφ) =

[

0 1√
2
(∂µv + ∂µH)

]




0

1√
2
(∂µv + ∂µH)



 =
1

2
(∂µH)(∂µH) (J.23)

(∂µφ)
†
(
ig

2
~τ · ~W µφ+

ig′Y

2
Bµφ

)

= −ig
4
(∂µH)W µ

3 (v +H) +
ig′Y

2
(∂µH)Bµ(v +H)

(J.24)
(
ig

2
~τ · ~W µφ+

ig′Y

2
Bµφ

)†
(∂µφ) =

ig

4
W3µ(v +H)(∂µH)− ig′Y

4
Bµ(v +H)(∂µH)

(J.25)
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We are now ready to put the first term of the lagrangian back together.

(Dµφ)
† (Dµφ) =

1

2
(∂µH)(∂µH)− ig

4
(∂µH)W µ

3 (v +H) +
ig′Y

4
(∂µH)Bµ(v +H) (J.26)

+
ig

4
W3µ(v +H)(∂µH)− ig′Y

4
Bµ(v +H)(∂µH) (J.27)

+
g2

4
W †

µW
µv2 +

g2

2
W †

µW
µvH +

g2

4
W †

µW
µH2 (J.28)

+
g2

8
|W3|2v2 +

g2

4
|W3|2vH +

g2

8
|W3|2H2 (J.29)

− gg′Y

4
W3µB

µv2 − gg′Y

4
W3µB

µvH − gg′Y

4
W3µB

µH2 (J.30)

+
g′2Y

8
|B|2v2 + g′2Y

4
|B|2vH +

g′2Y

8
|B|2H2 (J.31)

And theSU(2) gauge fields kinetic terms:

~Fµν · ~F µν = (∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν) · (∂µ ~W ν − ∂ν ~W µ − g ~W µ × ~W ν) (J.32)

= (∂µ ~Wν − ∂ν ~Wµ) · (∂µ ~W ν − ∂ν ~W µ)− g(∂µ ~Wν − ∂ν ~Wµ) · ( ~W µ × ~W ν) (J.33)

− g( ~Wµ × ~Wν) · (∂µ ~W ν − ∂ν ~W µ) + g2( ~Wµ × ~Wν) · ( ~W µ × ~W ν) (J.34)

= (∂µ ~Wν − ∂ν ~Wµ) · (∂µ ~W ν − ∂ν ~W µ)− 2g( ~Wµ × ~Wν) · (∂µ ~W ν − ∂ν ~W µ)

(J.35)

+ g2
[

|Wµ|2|Wν|2 − | ~Wµ · ~Wν |2
]

(J.36)

(J.37)
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Now we’re ready to put the lagrangian back together. After a little algebra:

L =
1

2
(∂µH)(∂µH) +

1

2
m2

0(v +H)2 − λ

16
(v +H)4

︸ ︷︷ ︸
Higgs kinetic, mass, and self-interaction terms

(J.38)

− 1

4
(∂µW1ν − ∂νW1µ)(∂

µW ν
1 − ∂νW µ

1 )−
1

4
(∂µW2ν − ∂νW2µ)(∂

µW ν
2 − ∂νW µ

2 )
︸ ︷︷ ︸

W± kinetic terms

(J.39)

− 1

4
(∂µW3ν − ∂νW3µ)(∂

µW ν
3 − ∂νW µ

3 )−
1

4
GµνG

µν (J.40)

+
1

8
v2(gW3µ − g′Y Bµ)(gW

µ
3 − g′Y Bµ)

︸ ︷︷ ︸
Terms that become theZ-boson and photon

(J.41)

+
g2v2

4
W †

µW
µ +

g2v

2
W †

µW
µH +

g2

4
W †

µW
µH2 +

g2v

4
|W3|2H +

g2

8
|W3|2H2 (J.42)

− gg′Y v

2
W3µB

µH − gg′Y

2
W3µB

µH2 +
g′2Y 2v

4
|B|2H +

g′2Y 2

8
|B|2H2

︸ ︷︷ ︸

W± mass,trilinear, quadrilinear couplings with the Higgs

(J.43)

1

2
g( ~Wµ × ~Wν) · (∂µ ~W µ − ∂ν ~W µ)− 1

4
g2
[

|Wµ|2|Wν |2 − | ~Wµ · ~Wν |2
]

︸ ︷︷ ︸
Quadrilinear couplings among the gauge bosons

(J.44)
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Appendix K: WH Production Amplitude

The Tevatron consists of a proton beam colliding with an antiproton beam. So let’s consider

this interaction when an up quark interacts with an anti-down quark; the interaction of an anti-up

quark with a down quark follows analogously. The full Lagrangian for the interaction is the sum

of the Higgs Sector of the Standard Model Lagrangian with theLagrangian for a quark doublet.

L =
1

2
(∂µH) (∂µH) +

1

2
µ2H2 +

g2v2

4
W †

µW
µ +

g2v

2
W †

µW
µH

︸ ︷︷ ︸
Higgs Sector

(K.1)

−1

4

∑

i=1,2

(∂µWiν − ∂νWiµ) (∂
µW ν

i − ∂νW µ
i )

︸ ︷︷ ︸

W boson kinetic terms

(K.2)

+iuγρ

(
1− γ5

2

)

∂ρu+ idγρ

(
1− γ5

2

)

∂ρd+
gVud√

2
dγρW

†ρ
(
1− γ5

2

)

u

︸ ︷︷ ︸
Quark Doublet

(K.3)

To calculate the cross section for this interaction, I want the interaction Lagrangian, which is

found by just collecting the interaction terms in the above Lagrangian.

LI =
g2v

2
W †

µW
µH +

gVud√
2
dγρW

ρ†
(
1− γ5

2

)

u (K.4)

I would like to change the form of the coefficients to be expressed in terms of theW mass and

electric charge. UsingmW = gv

2
ande0 = g sin θW ,

(p)Lu

(p’)Ld

*+W

(k’)+W

H(k)

Figure K.1 Associated Production with aW boson
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LI =
2m2

W

v
W †

µW
µH +

e0Vud√
2 sin θW

d̄γρW
ρ†
(
1− γ5

2

)

u (K.5)

Later, I’ll re-express the leftoverv in terms of the Fermi Coupling ConstantGF =
√
2/2v2.

This way, I’ll be able to express the cross section in terms ofmeasured quantities.

From the interaction Lagrangian density I need the interaction Hamiltonian density.

HI(x) = π(x)Φ̇(x)−LI(x) (K.6)

whereΦ(x) is a position-space field andπ(x) is its conjugate momentum field. However, in

this case there are no time-derivatives of fields in the interaction Lagrangian density. So it is simply

HI(x) = −L(x) (K.7)

= − 2m2
W

v
W †

µW
µH

︸ ︷︷ ︸

HIH (x)

− e0Vud√
2 sin θW

d̄γρW
ρ†
(
1− γ5

2

)

u

︸ ︷︷ ︸

HIq(x)

(K.8)

⇒ HI(x) = HIH(x) +HIq(x) (K.9)

The scattering matrix for this interaction is[33]

〈k′; k | S | p′; p〉 = 〈k′; k | 1 | p′; p〉+ i〈k′; k | T | p′; p〉 (K.10)

where we recall that the scattering matrix is defined as the time-evolution operator ast→ ∞.

〈k′; k | S | p′; p〉 = lim
t→∞

〈k′; k | eiH(2t) | p′; p〉 (K.11)

The interaction component here is what I want to calculate. From (4.90) Peskin and Schroeder[33]

i〈k′; k | T | p′; p〉 = lim
t→∞(1−iε)

〈k′; k | T exp



−i
t∫

−t

dt′HI(t
′)



 | p′; p〉 (K.12)

That exponential expands as (from (4.22) Peskin and Schroeder[33]):

T exp



−i
t∫

−t

dt′HI(t
′)



 = 1 + (−i)
t∫

−t

dt1HI(t1) +
(−i)2
2!

t∫∫

−t

dt1dt2T [HI(t1)HI(t2)] + · · ·

(K.13)
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As we are beginning and ending with two particle states, the second order term is the first that

can contribute to this interaction, and any higher-order terms contain loops that we do not address

here. The interaction part of the scattering matrix elementbecomes

i〈k′; k | T | p′; p〉 ∼= 〈k′; k | (−i)
2

2!

t∫∫

−t

dt1dt2T [HI(x1)HI(x2)] | p′; p〉 (K.14)

whereHI(x) =
∫
d3~xHI(x) =

∫
d3~x [HIH(x) +HIq(x)], and in the Hamiltonian I replaced the

variablet with full spacetime variablex = (t, x1, x2, x3) because all components now come into

play.

= 〈k′; k | (−i)
2

2

∫∫

dt1dt2T

[∫

d3~x1HI(x1)

∫

d3~x2HI(x2)

]

| p′; p〉 (K.15)

= 〈k′; k | (−i)
2

2
T

[∫

d4x1HI(x1)

∫

d4x2HI(x2)

]

(K.16)

=
(−i)2
2

∫∫

d4x1d
4x2〈k′; k | T [HI(x1)HI(x2)] | p′; p〉 (K.17)

=
(−i)2
2

∫∫

d4x1d
4x2〈k′; k | T [HIH(x1)HIH(x2) +HIH(x1)HIq(x2)+ (K.18)

HIq(x1)HIH(x2) +HIq(x1)HIq(x2)] | p′; p〉 (K.19)

Since I have an interaction that involves both the quark doublet and the Higgs, theHIH(x1)HIH(x2)

andHIq(x1)HIq(x2) terms do not contribute.

=
(−i)2
2

∫∫

d4x1d
4x2〈k′; k | T [HIH(x1)HIq(x2) +HIq(x1)HIH(x2)+] | p′; p〉 (K.20)

Next, I have to calculate these two time-ordered products inside the brackets. Using terms from

expression K.9 above,

T [HIq(x1)HIH(x2)] =
2e0m

2
WVud

v
√
2 sin θW

T

[

W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2)

]

(K.21)

=
2e0m

2
WVud

v
√
2 sin θW

N [W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2)

(K.22)

+ all contractions] (K.23)
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TheN operator indicates we explore all possible combination of field contractions, most of which

vanish as irrelevant. Field contractions will be expressednotationally asA(x)B(x)C(x) to contract
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fieldA with fieldC.

=
2e0m

2
WVud

v
√
2 sin θW

N [W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.24)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.25)

+W †
µ(x1)W

µ(x1)H(x1) d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.26)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.27)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.28)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.29)

+W †
µ(x1)W

µ(x1)H(x1) d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.30)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.31)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.32)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.33)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.34)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.35)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.36)

+W †
µ(x1)W

µ(x1)H(x1) d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.37)

+W †
µ(x1)W

µ(x1)H(x1) d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.38)

+W †
µ(x1)W

µ(x1)H(x1)d̄(x2)W/
†(x2)

(
1− γ5

2

)

u(x2) (K.39)

+terms with more than one contraction] (K.40)

There some important characteristics to note which will greatly simplify this mess:
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• Since we are dealing only with the tree-level production process, terms with more than one

contraction are automatically irrelevant.

• Contracted fields at the same spacetime coordinate constitute loops so they are not involved

in tree-level interactions.

• Contractions between fields of different types vanish. Physically, the contracted fields are

the propagator in the feynman diagram.

• If there are no contractions of a particular field atx1 with a field atx2, then there is no

interaction between the initial and final states.

• The initial and final particle fields must be uncontracted. They contract with the initial and

final state vectors later.

Hence, the only term left is the one that contractsW µ(x1) to W ν†(x2) in expression K.28–

this establishes the physical propagation of aW -boson field from spacetime coordinatex1 to x2.

Notice that this is the only transition from initial to final states possible at tree-level.
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Taking a step back to expression K.20, here’s where we are:

i〈k′; k | T | p′; p〉 = (−i)2e0m2
WVud

v
√
2 sin θW

× (K.41)
∫∫

d4x1d
4x2〈k′; k | [W †

µ(x1)W
µ(x1)H(x1)d̄(x2)γρW

ρ†(x2)

(
1− γ5

2

)

u(x2)

(K.42)

+ d̄(x1)γρW
ρ†(x1)

(
1− γ5

2

)

u(x1)W
†
µ(x2)W

µ(x2)H(x2)] | p′; p〉

(K.43)

i〈k′; k | T | p′; p〉 = (−i)2e0m2
WVud

v
√
2 sin θW

× (K.44)
∫∫

d4x1d
4x2〈k′; k | W †

µ(x1)W
µ(x1)H(x1)d̄(x2)γρW

ρ†(x2)

(
1− γ5

2

)

u(x2) | p′; p〉

(K.45)

+
(−i)2e0m2

WVud

v
√
2 sin θW

× (K.46)

∫∫

d4x1d
4x2〈k′; k | d̄(x1)γρW ρ†(x1)

(
1− γ5

2

)

u(x1)W
†
µ(x2)W

µ(x2)H(x2)] | p′; p〉

(K.47)

The two terms cover two Feynman diagrams:

• u and d̄ quarks interact at spacetime coordinatex1 to become a virtualW+, which then

radiates a Higgs boson at spacetime coordinatex2.

• The same situation with spacetime coordinatesx1 andx2 reversed.

The uncontracted terms now contract with the initial and final state vectors, corresponding

physically to the incoming and outgoing particles of the Feynman diagram. They contract as
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follows:

〈k′ |W †
µ(x) = 〈0 | ǫsµ∗(k′)eik

′·x (K.48)

〈k | H(x) = 〈0 | eik·x (K.49)

d̄(x) | p′〉 = e−ip′·xd̄r1(p′) | 0〉 (K.50)

u(x) | p〉 = e−ip·xur2(p) | 0〉 (K.51)

wherer1, r2 are the fermion spins.

In position-space, theW propagator includes an integral over the momentumq:

W ρ†(x1)W
µ(x2) =

∫
d4q

(2π)4
i

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

e−iq·(x1−x2) (K.52)

(K.53)

Let’s make the replacements in the scattering matrix.

i〈k′; k | T | p′; p〉 = (−i)2e0m2
WVud

v
√
2 sin θW

× (K.54)

∫∫

d4x1d
4x2[〈0 | ǫsµ∗(k′)eik

′·x1

︸ ︷︷ ︸

W †

〈0 | eik·x1

︸ ︷︷ ︸

H

∫
d4q

(2π)4
i

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

e−iq·(x2−x1)

︸ ︷︷ ︸
W−propagator

(K.55)

e−ip′·x2d̄r1(p′) | 0〉
︸ ︷︷ ︸

d̄

γρ

(
1− γ5

2

)

e−ip·x2ur2(p) | 0〉
︸ ︷︷ ︸

u

] (K.56)

+
(−i)2e0m2

WVud

v
√
2 sin θW

× (K.57)

∫∫

d4x1d
4x2[e

−ip′·x1d̄r1(p′) | 0〉
︸ ︷︷ ︸

d̄

γρ

∫
d4q

(2π)4
i

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

e−iq·(x1−x2)

︸ ︷︷ ︸

W−propagator

(
1− γ5

2

)

(K.58)

e−ip·x1ur2(p) | 0〉
︸ ︷︷ ︸

u

〈0 | ǫsµ∗(k′)eik
′·x2

︸ ︷︷ ︸

W †

〈0 | eik·x2

︸ ︷︷ ︸

H

] (K.59)



196

Integratingx1 andx2 over the exponentials is the very definition–or one of many–of a 4-dim Dirac

delta function.

i〈k′; k | T | p′; p〉 =
[
i(−i)2e0m2

WVud

v
√
2 sin θW

] ∫

d4qǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

d̄r1(p′) (K.60)

γρ

(
1− γ5

2

)

ur2(p)(2π)4δ4(−k′ − k − q)δ4(p′ + p+ q) (K.61)

+

[
i(−i)2e0m2

WVud

v
√
2 sin θW

] ∫

d4qd̄r1(p′)γρ

(
1− γ5

2

)

ur2(p) (K.62)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

ǫsµ
∗(k′)(2π)4δ4(−k′ − k − q)δ4(p′ + p+ q) (K.63)

i〈k′; k | T | p′; p〉 =
[
i(−i)2e0m2

WVud

v
√
2 sin θW

]

(2π)4ǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

d̄r1(p′)γρ (K.64)

(
1− γ5

2

)

ur2(p)δ4(p′ + p− k′ − k) (K.65)

+

[
i(−i)2e0m2

WVud

v
√
2 sin θW

]

(2π)4d̄r1(p′)γρ

(
1− γ5

2

)

ur2(p) (K.66)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

ǫsµ
∗(k′)δ4(p′ + p− k′ − k) (K.67)

Now that the integral overq has been carried out over theδ-functions, it is understood thatq =

k′ + k = p′ + p explicitly now.

i〈k′; k | T | p′; p〉 =
[−2ie0m

2
WVud

v
√
2 sin θW

]

(2π)4ǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

(K.68)

d̄r1(p′)γρ

(
1− γ5

2

)

ur2(p)δ4(p′ + p− k′ − k) (K.69)

Recall from Peskin and Schroeder (4.73)[33]

i〈k′; k | T | p′; p〉 = (2π)4δ4(p′ + p− k′ − k) · iM(p′, p→ k′, k) (K.70)

Finally, the invariant amplitude for Higgs associated production with aW+-boson is

iM =

[−2ie0m
2
WVud

v
√
2 sin θW

]

ǫsµ
∗(k′)

[ −gµρ + qµqρ

m2
W

q2 −m2
W + iε

]

d̄r1(p′)γρ

(
1− γ5

2

)

ur2(p) (K.71)
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Appendix L: H → WW Lagrangian Density To Invariant Am-
plitude

For a Higgs boson decay to twoW bosons, the Lagrangian density comes from the Higgs sector

of the standard model Lagrangian. TheZ boson and photon terms can be excluded.

L =
1

2
(∂µH) (∂µH) +

1

2
µ2H2 +

g2v2

4
W †

µW
µ +

g2v

2
W †

µW
µH

︸ ︷︷ ︸

Higgs Sector

−1

4

∑

i=1,2

(∂µWiν − ∂νWiµ) (∂
µW µ

i − ∂νW µ
i )

︸ ︷︷ ︸
W boson kinetic terms

To calculate the invariant amplitude for the decay, I want the interaction Lagrangian.

L =
g2v

2
W †

µW
µH

From this I need the interaction Hamiltonian density.

HI =
∑

fields

π(x)Φ̇(x)−LI(x)

whereΦ(x) is a position-space field andπ(x) is its conjugate momentum field. However, in this

case there are no time-derivatives of fields in the interaction Lagrangian density. So it is simply

HI(x) = −L

= −g
2v

2
W †

µW
µH

The scattering matrix for this interaction is

〈k1, k2|S|p〉 = 〈k1, k2|1|p〉+ i〈k1, k2|T |p〉

where we recall that the scattering matrix is defined as the time-evolution operator ast→ ∞.

〈k1, k2|S|p〉 = lim
t→∞

〈k1, k2|eiH(2t)|p〉
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The interaction component here is what I want to calculate. From (4.90) Peskin,

i〈k1, k2|T |p〉 = lim
t→∞(1−iε)

〈k1, k2|T exp



−i
t∫

−t

dt′HI(t
′)



|p〉

That exponential expands as (from (4.22) Peskin)

T exp



−i
t∫

−t

dt′HI(t
′)



 = 1 + (−i)
t∫

−t

dt1HI(t1) +
(−i)2
2!

t∫∫

−t

dt1dt2T [HI(t1)HI(t2)] + · · ·

This scenario is just a tree-level decay–there are no loops to consider or propagators between

two spacetime coordinatesx1 andx2. Hence, let’s consider only the contribution from the 1st order

term. The interaction part of the scattering matrix becomes

i〈k1, k2|T |p〉 ∼= 〈k1, k2|(−i)
t∫

−t

dt1HI(x1)|p〉

whereHI(x) =
∫
d3xHI(x), and in the Hamiltonian I replaced the variablet with the full space-

time variablex because all components now come into play.

i〈k1, k2|T |p〉 = (−i)〈k1, k2|
t∫

−t

dt1

∫

d3xHI(x)|p〉

= −i〈k1, k2|
∫

d4xHI(x)|p〉

= −i
∫

d4x〈k1, k2|HI(x)|p〉

= −i
∫

d4x〈k1, k2|
−g2v
2

W †
µW

µH|p〉

=
−ig2v

2

∫

d4x〈k1, k2|W †
µW

µH|p〉

Assume the fields are now contracted with their state vectors.
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If we go to my contractions section:

〈k|Wµ(x) = 〈0|ε∗µ(k, λ)eik·x

H|p〉 = e−ip·x|0〉

Using these

i〈k1, k2|T |p〉 =
ig2v

2

∫

d4xǫ∗µ(k1, λ1)e
ik1·xǫ∗

µ

(k2, λ2)e
ik2·xe−ip·x

=
ig2v

2

∫

d4xǫ∗µ(k1, λ1)ǫ
∗µ(k2, λ2)e

i(k1+k2−p)·x

=
ig2v

2
ǫ∗µ(k1, λ1)ǫ

∗µ(k2, λ2)δ
4(k1 + k2 − p)(2π)4

Recall from (4.73) Peskin

i〈k1, k2|T |p〉 = (2π)4δ4(k1 + k2 − p) · iM(p→ k1, k2)

⇒ iM =
ig2v

2
ǫ∗µ(k1, λ1)ǫ

∗µ(k2, λ2)
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Appendix M: H →WW Invariant Amplitude to Decay Rate (Γ)

The decay rate from (4.83) Peskin is

Γ =
1

2mH

[
d3k1

2E1(2π)3
d3k2

2E2(2π)3

]
∑

λ1,λ2

|M|2(2π)4δ4(k1 + k2 − p)

So let’s square the amplitude

iM = igmW ǫ
∗
µ(k1, λ1)ǫ

∗µ(k2, λ2)

|M|2 = g2m2
W

(
ǫ∗µ(k1, λ1)ǫν(k1, λ1)

) (
ǫ∗

µ

(k2, λ2)ǫ
ν(k2, λ2)

)

Now deal with the spin sum

∑

λ1,λ2

|M|2 = g2m2
W

∑

λ1,λ2

(
ǫ∗µ(k1, λ1)ǫν(k1, λ1)

) (
ǫ∗

µ

(k2, λ2)ǫ
ν(k2, λ2)

)

= g2m2
W

(

−gµν +
k1µk1ν
m2

W

)(

−gµν + kµ2k
ν
2

m2
W

)

= g2m2
W

(

gµνg
µν − gµν

kµ2k
ν
2

m2
W

− gµν
k1µk1ν
m2

W

+
k1µk1νk

µ
2k

ν
2

m2
W

)

= g2m2
W

(

4− k22
m2

W

− k21
m2

W

+
(k1 · k2)2
m4

W

)

Recall that in a reaction the 4-momentum squared is a relativistic invariant. Using this invariant,

we may alternate among before and after the decay, and viewing from the lab frame or CM frame

(or any other frame). In this case, let’s try before and afterdecay entirely in the CM frame. This

means~p = 0, and for theW boson energy and momentaE1 = E2 = E, ~k1 = −~k2 ≡ ~k.

⇒ k2

m2
W

=
E2 − |~k|2
m2

W

=
(m2

W + |~k|2)− |~k|2
m2

W

= 1
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Also,

(mH , 0)
2 = (E1 + E2, ~k1 + ~k2 = 0)2

m2
H = 4E2

2 = 4(m2
W + |~k|2)

m2
H = 4m2

W + 4|~k|2

m2
H − 2m2

W = 2(m2
W + 2|~k|2)

m2
H − 2m2

W

2
= k1 · k2

where in the last line I used

k1 · k2 = (E1, ~k1) · (E2, ~k2)

= (E,~k) · (E2,−~k)

= E2 + |~k|2

= (m2
W + |~k|2) + |~k|2

= m2
W + 2|~k|2

Now we may put these results back into the spin-summed invariant amplitude.
∑

λ1,λ2

|M|2 = g2m2
W

(

4− 1− 1 +
(m2

H − 2m2
W )2

4m4
W

)

= g2m2
W

(

2 +
m2

H − 4m2
Wm

2
H + 4m4

W

4m4
W

)

= g2m2
W

(

2 +
m4

H

4m4
W

− m2
H

m2
W

+ 1

)

= g2m2
W

(
3m4

H

4m4
W

· 4m
4
W

m4
H

+
m4

H

4m4
W

− m4
H

4m4
W

· 4m
4
W

m4
H

· m
2
H

m2
W

)

= g2m2
W

m4
H

4m4
W

(

1 +
12m4

W

m4
H

− 4m2
W

m2
H

)

=
g2m4

H

4m4
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)
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Put this into the decay rate.

dΓ =
1

2mH

[
d3k1

2E1(2π)3
d3k2

2E2(2π)3

]
g2m4

H

4m4
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)

(2π)4δ4(k1 + k2 − p)

Γ =
g2m3

H

32(2π)2m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫
d3~k1
E1

d3~k2
E2

δ(E1 + E2 −Ep)δ
3(~k1 + ~k2 − ~p)

In the CM frame,Ep = mH and~p = 0.

Γ =
g2m3

H

32(2π)2m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫
d3~k1
E1

d3~k2
E2

δ(E1 + E2 −mH)δ
3(~k1 + ~k2)

Γ =
g2m3

H

32(2π)2m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫
d3~k

√

m2
W + |~k1|2

d3~k
√

m2
W + |~k2|2

δ(E1 + E2 −mH)δ
3(~k1 + ~k2

Perform thek2 integration. Because ofδ3(~k1+~k2), this will just enforce~k1 = −~k2 ⇒ |~k1|2 = |~k2|2.
Since we are dealing only with these momenta squared now, let’s drop the index and just use|~k|.

Γ =
g2m3

H

32(2π)2m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫
d3~k

m2
W + |~k|2

δ(E1 + E2 −mH)

Express the remaining differential in spherical coordinatesd3~k = |~k|2d|~k| sin θdθdφ, where
∫
sin θdθdφ = 4π.

Γ =
g2m3

H

32(2π)2m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫ |~k|2d|~k| sin θdθdφ
m2

W + |~k|2
δ(E1 + E2 −mH)

In the CM frame,E1 = E2 =

√

m2
W + |~k|2.

Γ =
g2m3

H

8(4π)m2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫

d|~k| |~k|2

m2
W + |~k|2

δ

(

2

√

m2
W + |~k|2 −mH

)
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We must take care here. The integral is over|~k| but the argument of theδ-function has more

than one zero, so there is an ambiguity of which value|~k| should take from the integration. Fortu-

nately, it is possible to expand theδ-function as follows:

δ(f(x)) =
∑

j

1

f ′
(
xj0
)δ
(
x− xj0

)

wherej counts over the zeros off(x) andf ′ = df

dx
. Let f(k) = 2

√

m2
W + |~k|2 −mH and find the

zeros:

mH = 2

√

m2
W + |~k|2

m2
H

4
= m2

W + |~k|2

1

4

(
m2

H − 2m2
W

)
= k2

±1

2

√

m2
H − 2m2

W = k

However, a negative momentum magnitude doesn’t make sense so we only use the positive

one.

f ′(k) =
2k

√

m2
W + k2

f ′(k0) =

√

m2
H − 4m2

W
√

m2
W + 1

4
m2

H −m2
W

f ′(k0) =

√

m2
H − 4m2

W
1
2
m2

H

f ′(k0) =
2

mH

√

m2
H − 4m2

W

⇒ δ(f(k)) = − mH

2
√

m2
H − 4m2

W

δ

(

|~k| − 1

2

√

m2
H − 4m2

W

)
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Put this into the decay rate.

Γ =
g2m3

H

32πm2
W

(

1− 4m2
W

m2
H

+
12m4

W

m4
H

)∫

d|~k| |~k|2

m2
W + |~k|2

mH

2
√

m2
H − 4m2

W

δ

(

|~k| − 1

2

√

m2
H − 4m2

W

)

=
g2m3
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Appendix N: WZ Cross Section Measurement in5.9fb−1
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