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Outline
 Overview
 Analysis Strategy

Cross-checks
 Theoretical and systematic 

uncertainties
 Results and conclusions

Future research
 Many recent summaries of 

Tevatron Higgs programs:
 Jay Dittmann, Users Meeting, June 2, 2010 
Matthew Herndon, Wine & Cheese on March 12, 2010
Sergo Jindariani, Wine & Cheese on March 13, 2009
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Collider Physics at the Tevatron
 Tevatron experiments 

probe processes many 
orders of magnitude apart 
in cross section

 Precision measurements 
and new discoveries
 WZ, ZZ, single top

 Now reaching sub-
picobarn cross section 
sensitivity
 Standard Model Higgs 

boson is within reach! Harder to Observe
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The Higgs Boson
 Higgs Mechanism generates the mass of particles

 … yet, gives no hint of what the Higgs boson mass is
 If Higgs boson exists, its mass must be determined 

experimentally

Tevatron Exclusion

 LEP direct searches excluded m
H
 

< 114.5 GeV at 95% C.L.
 Tevatron excludes 162-166 GeV 

from CDF+D0 H� WW searches

 Indirect electroweak constraints 
prefer light Higgs (< 154)
 Combined with LEP results �  

upper limit of m
H
 < 185
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The Tevatron Collider
 Collides pp at � s = 1.96 TeV
 Thanks to AD for delivering 

luminosity...
 And CDF for keeping the 

detector running well...
 And CD for processing data!

 CDF acquired luminosity 
~7.4 fb-1

Using 5.9 fb-1 for 
today's result
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The CDF II Detector
 General multipurpose detector

 Excellent tracking and mass resolution:
 Silicon inner tracker
 Drift chamber outer tracker

 Calorimeters
 Segmented sampling EM 

and Hadronic
 Muon chambers

 CMU/CMP (|� | < 0.6)
 CMX (0.6 < |� | < 1.0)

 Complex geometry
 Try to maximize Higgs 

acceptance
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SM Higgs Boson at the Tevatron
 Four main production mechanisms

 Gluon fusion is the dominant process
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SM Higgs Boson Decay
 Higgs decay mode depends on Higgs mass m

H

 Low Mass: H �  bb
 High Mass: H �  WW

 For gg �  H �  WW,
 Peak sensitivity m

H
~165

High MassLow Mass

135 GeV

BR from HDECAY
M. Spira
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions
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General Analysis Approach
1.  Select inclusive event 

sample that maximizes 
acceptance for Higgs 
signal
● For m

H
 = 165 GeV, CDF 

reconstructs ~7 events 
per inverse fb

2. Model all backgrounds 
and cross check with 
data using control regions

3. Use advanced analysis 
tools to separate signal 
from background based 
on event kinematics
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H �  WW Final States
 BR(W� hadrons) ~ 68%

 Large QCD backgrounds
 Investigate adding channels 

with one leptonic W and one 
hadronic W

 Dilepton (e, � ): BR ~ 6%
 Sensitive to �  �  (e, � )
 Small BR, but...              

clean, easy to trigger

 Lepton + �
had

: BR ~ 4%

 Recently added at CDF
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 Decay kinematics
 2 opposite-sign leptons with high 

transverse momentum (p
T
)

 Missing energy from neutrinos
 WW pair from spin-0 Higgs boson:

 Dilepton opening angle strongest 
background discriminant 

H
μ+

ν
W-

W+

e-

ν

W-

W+

Spin correlation:
Leptons go in the 
same direction

H �  WW �  ll� �  Signature

Signal x 10

Backgrounds
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H �  WW �  ll� �  Backgrounds
 SM processes with similar fi nal 

states considered backgrounds
 All cross sections measured by 

Tevatron experiments
 Many discovery analyses:

 WW, WZ, ZZ
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions



J. Pursley 15June 18, 2010

 Simple event counting won't work
 S/B = 0.015 in most sensitive search channel

 Use multivariate analysis (MVA) techniques to 
discriminate between signal and background
 Matrix Elements (ME), Artifi cial Neural Networks (NN), 

Boosted Decision Trees (BDT)
 Typically add 10-20% in sensitivity beyond that achieved 

using the best 1-2 variables
 Since we rely on kinematic shapes to separate 

potential signal from backgrounds, important aspect of 
these searches is how well we model these shapes
 Specifi c control regions designed to test modeling of 

individual backgrounds (whenever possible)

Strategy
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W+jets Background
 W+jets events enter dilepton 

sample when the W decays 
leptonically, and a jet is 
misidentifi ed as a lepton

 Model with data, not MC
Use jet-triggered data samples to 

measure rate at which jets are 
misidentifi ed

 Check modeling in same-sign 
dilepton events with zero jets
Excellent modeling of kinematic 

variable shapes
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W�  Background
 W�  enters dilepton sample when W 

decays leptonically and photon 
converts in detector material
 Modeled by Baur MC

 Powerful control region: same-sign 
leptons with dilepton invariant 
mass < 16 GeV
 90% composed of W�
 Above 16 GeV, W+jets dominate

 Control region is used to determine 
a scale factor for W�  normalization
 Scale W�  by 0.87
 Excellent modeling of kinematic 

variable shapes
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Top-quark Background
 Dominant background for 

opposite-sign dilepton events 
with two or more jets
 Modeled by PYTHIA Tune A

 Remove events with b-tagged 
jets as a control region
 Tight secondary vertex tagger
 Almost entirely top-quark pairs

 Measure tt cross section 
consistent with theory and CDF 
top-quark measurements
 Excellent modeling of kinematic 

variable shapes
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Drell-Yan Background
 Model Z� ll (l = e, � , �) with 

PYTHIA
 Good match with inclusive Z 

p
T
 (boost) observed in data

 However, requiring missing 
E

T
 leads to disagreement 

between data and MC
 Due to mismodeling of the 

underlying event and jets
 Correct MC in intermediate 

missing E
T
 range

 Obtain good modeling of 
kinematic variable shapes
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WW Cross Section
 Measure WW cross 

section in 0 jet signal 
region
 Two opp-sign leptons, 

high missing energy
 Binned maximum 

likelihood fi t to ME 
likelihood ratio distribution

World's best measurement!
 Good agreement with theory

PRL 104, 201801 (2010)
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WZ Cross Section

 Measure WZ cross section 
in trilepton signal region
 WZ �  l� ll

 Use NN to separate WZ
 Binned max. likelihood fi t 

to NN template

World's best measurement!
 Good agreement with theory (3.46 pb)

New Result!

40 Expected WZ Events
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Analysis Strategy

 Final State Signature
 Cross Checks
 Signal Regions
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Summary of Signal Regions
Channel Main Signal Main 

Background
Most important 
kinematic variables

OS dileptons 0-jets gg �  H WW LR
HWW

, � R
ll
, H

T

OS dileptons 1-jet gg �  H WW, DY � R
ll
, M

T
(ll,E///

T
), E///

T

OS dileptons 2+ jets Mixture tt  H
T
, � Ρ

ll
, M

ll

OS dileptons low M
ll
, 0+1 jets gg �  H W� p

T
(l

2
), p

T
(l

1
), E(l

1
)

SS dileptons 1+ jets WH W+jets N
jets

, E///
T
 signif, H

T

Trileptons, no Z-cand, all jets WH WZ M
T
(l,E///

T
), � R

ll

close, Flavor

Trileptons, Z-cand and 1-jet ZH WZ E///
T
, � R

ll
(W-lep,j), E

T
(j)

Trileptons, Z-cand and 2+ jets ZH WZ, Z+jets � R
ll
(W-lep,j), M

jj
, M

W

OS dilepton, e + hadronic � gg �  H W+jets � R
l�
, �  id variables

OS dilepton, �  + hadronic � gg �  H W+jets � R
l�
, �  id variables

No Channel Left Behind
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Summary of Signal Regions
Channel Main Signal Main 

Background
Most important 
kinematic variables

OS dileptons 0-jets gg �  H WW LR
HWW

, � R
ll
, H

T

OS dileptons 1-jet gg �  H WW, DY � R
ll
, M

T
(ll,E///

T
), E///

T

OS dileptons 2+ jets Mixture tt  H
T
, � Ρ

ll
, M

ll

OS dileptons low M
ll
, 0+1 jets gg �  H W� p

T
(l

2
), p

T
(l

1
), E(l

1
)

SS dileptons 1+ jets WH W+jets N
jets

, E///
T
 signif, H

T

Trileptons, no Z-cand, all jets WH WZ M
T
(l,E///

T
), � R

ll

close, Flavor

Trileptons, Z-cand and 1-jet ZH WZ E///
T
, � R

ll
(W-lep,j), E

T
(j)

Trileptons, Z-cand and 2+ jets ZH WZ, Z+jets � R
ll
(W-lep,j), M

jj
, M

W

OS dilepton, e + hadronic � gg �  H W+jets � R
l�
, �  id variables

OS dilepton, �  + hadronic � gg �  H W+jets � R
l�
, �  id variables

No Channel Left Behind
See S. Jindariani's
W&C for details
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Final Discriminants

NN/BDT

 NN or BDT outputs (templates) are 
the fi nal discriminant used to set 
limits on Higgs production

Training

Event
kinematics

Final
discriminant

B
ac kg
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u

n
d

s

S
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n
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 Trilepton signature occurs in 
associated production
 WH �  WWW �  l� l� l�
 ZH �  ZWW �  lll�  + X

 Dominant background is WZ, ZZ

Trilepton Searches

Expected sensitivity 
at 165 GeV ~4.6xSM

 Divide events by whether two opposite-sign, same-fl avor 
leptons form a Z-candidate
 Isolate WH and ZH signal regions
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Hadronic Tau Backgrounds
 Very different mix of backgrounds for 

events with one hadronically decaying 
tau lepton
 QCD and Z �  � � backgrounds

 Unique: rely on �  ID variables as well as 
kinematics to discriminate between 
signal and background
 Need cross checks to verify both

 Form orthogonal control 
regions to study:
 W+jets (both e�  and � �)
 QCD (for e� )
 Z �  � � (for � �)
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Hadronic Tau Searches
 Dominant background W+jets

 Modeled by ALPGEN MC 
instead of with data

 Use different MVA technique
 Boosted Decision Trees 

instead of NN

 Overall good modeling in 
both e�  and � �

 Expect ~1.5 signal 
events, ~730 backgroud
 Expected sensitivity at 

165 GeV is ~15 x SM

Signal x 20
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Improvements since March 2010
 Updated all search channels to 5.9 fb-1

 Drell-Yan missing E
T
 correction

 Tightened electron selection for the same-sign dilepton 
search
 Reduces W+jets events with minimal impact on signal

 New WW MC@NLO sample
 Old sample had limited statistics
 Updated to latest version of MC@NLO and generated 10x 

more statistics
 Improved treatment of systematic uncertainties

 More sophisticated determination of both rate and shape 
uncertainties

mailto:MC@NLO
mailto:MC@NLO
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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H �  WW �  ll� �  Systematics
 Two classes of 

systematics:
Rate

 Affect only 
normalization

Shape
 Modify output of 

discriminant

Systematic (%) Sig Bkgs
Cross section 5-12 5-10
Conversions 0 10-20
NLO diagrams 3-10 10
PDF model 3-12 1-5
Jet energy scale 5-10 1-30
Lepton ID 2 2
Trigger effi ciency 2-3 2-3
Luminosity 6 6

Rate

Shape
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Determination of Uncertainties
 Two main categories of systematics

 Cross SectionCross Section: theoretical uncertainty on the production 
cross section for a process
 Rate systematic only

 AcceptanceAcceptance: uncertainty on our modeling of the 
acceptance or kinematic variables for a process
 Rate and shape systematics

 For today, touch on the main signal and background 
uncertainties
 Gluon fusion signal: theoretical uncertainties affect both 

cross section and acceptance
 Also look at theory uncertainties for the WW background
 Example of shape effects for the jet energy scale
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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Gluon Fusion Cross Section
 Limits depend signifi cantly on theoretical Higgs 

production cross sections
 Gluon fusion, the dominant production process, has the 

largest uncertainties!
 Currently use inclusive cross section calculations of 

de Florian and Grazzini (arXiv:0901.2427v2)
 Soft-gluon resummation to NNLL
 Proper treatment of b-quarks to NLO
 Inclusion of two-loop electroweak effects
 MSTW2008 Parton Density Functions

 In good agreement with calculations of Anastasiou, 
Boughezal, and Petriello (arXiv:0811.3458v2)
 Fixed-order calculation up to NNLO
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Cross Section Uncertainties
 Dominant sources of theoretical uncertainty:

 Higher-order QCD radiative corrections (Scale)
 Parton density functions (PDF)

 Because we separate on number of reconstructed jets, 
must determine topology-dependent scale factors

 Estimate scale uncertainties by varying renormalization 
and factorization scales between 
m

H
/4 and m

H

 m
H
/2 is central value for fi xed-order

 Use MSTW2008 alternative error 
sets which vary both �

S
 and 20 PDF 

fi t parameters
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Modeling Gluon Fusion Signal
 Use PYTHIA, which is LO but has 

its own mechanisms for including 
effects of soft gluon radiation
 Generate samples in 5 GeV steps 

from 110 up to 200
 Because kinematics are important, 

re-weight PYTHIA events at 
generator-level to match Higgs p

T
 

spectrum obtained from full NNLL 
calculation
 Self-consistent with normalizing to 

NNLL inclusive cross section
 Signal acceptance is determined 

from re-weighted sample
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Acceptance Uncertainties
 We assign scale and PDF 

uncertainties on the acceptance, in 
addition to the cross section
 Quantify variations in Higgs p

T
 and 

rapidity spectra as a function of 
scale and PDF choices

 Apply additional reweightings until 
PYTHIA samples match variations

 Assign uncertainties based on 
observed changes in signal 
acceptance by channel

 Also allows us to assign shape 
uncertainties to signal templates
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Theoretical and 
Systematic 

Uncertainties

 Overview
 Signal Uncertainties
 Background Uncertainties
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WW Uncertainties
 Dominant background in most regions where gluon 

fusion is dominant signal
 Want to model kinematics as well possible
 Use NLO Monte Carlo: MC@NLO

 Treat uncertainties in same manner as for gluon fusion
 Use the WW p

T
 and rapidity spectra to re-weight and 

assign uncertainties based on changes in acceptance

mailto:MC@NLO
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Other Shape Systematics: JES
 Negligible shape effects in regions where we separate 

by jet multiplicity or use all jets
 Rate uncertainty: moves events between jet bins
 Affects both backgrounds and signals

 Shape effects come in regions which reject events 
based on jet multiplicity
 Same-sign dileptons: remove 0 jet events

Signal: WHBackground: WZ



June 18, 2010 J. Pursley 41

Results
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Updated CDF H� WW Result
 Expected ~5% 

in sensitivity 
from adding 
luminosity

 Additional 
systematics 
reduced this to 
~2-3%

Expected Limits at
160: 1.05 x SM
165: 1.00
170: 1.20

Reaching SM
sensitivity with a

single experiment!
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Updated CDF H� WW Result
 Observed limit 

is slightly higher 
than expected 
over the mass 
range

 Previously, 
expected and 
observed 
followed each 
other closely

Observed (Expected) Limits at
160: 1.32 (1.05)
165: 1.08 (1.00)
170: 1.28 (1.20)
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Observed limits at 160 GeV
 Number of events in data increased more than expected

 Not at high S/B NN output, but over the entire range

Expected 1.26
Observed 1.27

Expected 1.05
Observed 1.32
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Sensitivity Projections

 Improvements will push Tevatron sensitivity!

Sensitivity Range
from March 2010

High Mass
analyses only!
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Projected Improvements
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How to Improve?
 Add more acceptance

 New search channels:
 H �  WW �  l� jj (in progress)

 Addition of lower p
T
 leptons and triggers

 Investigate loosening isolation cut on leptons
 Higgs leptons very close together, could lie in each other's 

isolation cones (especially for low M
ll
 events)

 Need to understand rate of lepton fakes with isolation

 Improve analysis techniques
 Still many ideas!

 Optimize neural networks for low/high mass separately, 
improve missing E

T
 description, study lepton isolation...
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Summary
 Exciting times for Higgs boson searches!
 Tevatron making great strides in high mass searches

 Sensitivity continues to improve faster than luminosity 
scaling

 Low mass searches also 
approaching SM sensitivity
 At m

H
 = 115, 2.4 x �

SM

 Soon “high mass” will 
become important to probe 
intermediate mass range

 Current Tevatron exclusion 
in the Higgs mass range 
162-166 GeV
 More to come!
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 To Fermilab and the Accelerator Division for providing 
the data

 To the CDF Collaboration for collecting the data with 
high effi ciency

 And especially, the dedicated members of the H� WW 
analysis group at CDF for analyzing the data!
 Particularly Massimo Casarsa, Eric James, Sergo 

Jindariani, Thomas Junk, Jason Nett, Rick St. Denis,  
Geumbong Yu
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Extra Slides
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Standard Model of Particle Physics
 At high energies, weak 

and electromagnetic 
forces can be unifi ed into 
one force – electroweak
 But at low energies, they 

behave very differently
 Photon is massless 

while W and Z bosons 
are heavy

 How does electroweak 
symmetry breaking 
occur?
 In the SM, via the Higgs 

Mechanism
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SM Higgs Mechanism
 To break the symmetry of the electroweak force:

Electroweak force is a gauge theory – SU(2) �  U(1)
 Interactions follow from symmetries �  4 massless 

gauge bosons
 Introduce nonzero scalar fi eld permeating all space

 To preserve gauge invariance, 3 of the 4 gauge 
bosons gain mass (W+, W-, Z0)

 One remaining degree of freedom:
Manifests as a massive, spin-0 particle associated 

with the scalar fi eld
 The Higgs boson! – but no prediction for its mass

Finding the Higgs boson would directly test the theory



J. Pursley 53June 18, 2010

Searches for SM Higgs Boson

Plot from Tommaso Dorigo's blog

 In late 1990s, CERN made 
direct searches for SM Higgs
 Excluded m

H
 < 114.5 GeV  

at 95% C.L.
 Indirect constraints from 

electroweak data prefer 
lighter Higgs (m

H
 < 154)

 Combined with LEP results 
�  upper limit of m

H
 < 185

 Now Tevatron continues with 
direct searches

 We know where to look!
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H �  WW �  ll� �  Triggers
 Extract handful of Higgs 

events from background 11 
orders of magnitude larger!

 High p
T
 lepton triggers

 Central electrons
 Muons (CMUP, CMX)
 Forward electrons + Met
 One lepton must satisfy 

trigger requirements
 Use luminosity ~4.8 fb-1

 Require good detector 
performance

1

Higgs gg� H 0.03-0.3



J. Pursley 55June 18, 2010

H �  WW �  ll� �  Selection
 Trigger on high p

T
 lepton

 Two opposite-charge leptons (e 
 p

T
(l

1
) > 20, p

T
(l

2
) > 10 GeV

 Dilepton mass M
ll
 > 16 GeV

 Suppress low mass backgrounds
 Require large missing transverse energy (Met)

 Backgrounds can mimic Met if the energy of a jet or 
lepton is mismeasured in the detector

 Classify events by the number of reconstructed jets
 Three categories: 0 jet, 1 jet, and 2 or more jets
 Each has a different background composition

 Better to optimize for signal in each separately
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H �  WW Analysis, 4 years ago
 Based on 360 pb-1 of data

 Considered only gluon fusion 
Higgs production

 Used dilepton � � as discriminant
 Published: PRL 97, 081802 (2006)

 With 5 fb-1 using this method,
  Expected limit for m

H
 = 160 GeV:  

~3 x �
SM

 

 To reach SM sensitivity, need to 
improve the method!
 Increase lepton acceptance
 Optimize signal separation
 Multivariate analysis techniques
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Neural Network

 Use NeuroBayes neural networks
 Commercial NN package with fast, robust training methods
 Each network has 3 layers: 

 Input layer (n nodes), hidden layer (n+1), output layer (1)
 Trained on a weighted combination of signal + background
 Excess of data at high NN score would indicate signal!
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Signal Regions
 See S. Jindariani's wine & chees 

from March 2009 for more details on 
our primary search regions

 Opposite-sign dileptons divided by 
number of reconstructed jets
 0-jet: WW and gluon fusion dominate
 1-jet: WW and DY backgrounds
 2+ jets: t-tbar dominates

 Also consider separately a low-
dilepton mass region (M

ll
 < 16 GeV)

 W�  background, gluon fusion signal

 Same-sign dileptons
 W+jets background, VH signal
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Matrix Elements

 Event-by-event probability density

 Model 5 modes:
 HWW, WW, ZZ, W� , W+jet

 Construct Likelihood Ratio �
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Background Modeling
 Most backgrounds modeled by Monte Carlo

 WW by MC@NLO, others by Pythia or Baur (W� ), except...

 W+jets uses data-driven estimate of fake leptons:
 Select identifi ed leptons (numerator) and “fakeable objects” 

(denominator) in jet data samples
 Subtract ewk contributions from Z� ee/� � and W� e/�  � MC
 Calculate ratio – for each lepton category
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Tevatron High Mass Combination

 Combine results into an overall Tevatron Higgs limit
 Calculate both Bayesian and CL

s
 limits (similar results)

 Exclude SM Higgs with mass 162-166 GeV at 95% CL
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Setting a limit
 Use Bayesian limits calculator

 Tom Junk's MCLimit program
 Prior is fl at in the number of Higgs boson events
 Return the 95% credibility upper limit (C.L.)

 Input distributions for each channel:
 1 NN output template for each event hypothesis:

 gg� H, ZH, WH, VBF, WW, WZ, ZZ, W� , W+jets, DY, tt
 Total of 8 (11) histograms at each Higgs mass

 For a combined limit, use templates for all channels 
being combined

 Include all systematic uncertainties as nuisance 
parameters using pseudo-experiments
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