Quantum Opportunities in Gravitational Wave Detectors

Two revolutions

- Direct observation of gravitational waves should open a new window into the Universe
- Gravitational wave detectors are the most sensitive position meters ever constructed
- The quantum limit in gravitational wave detectors opens up a whole new field of study
- Quantum opportunities in gravitational wave detectors
 - Applications of quantum optics techniques
- -----
- New tools for quantum measurement on truly macroscopic (human) scales

Gravitational waves (GWs)

- Prediction of Einstein's General Relativity (1916)
- Indirect detection led to Nobel prize in 1993
- Ripples of the space-time fabric
- GWs stretch and squeeze the space transverse to direction of propagation
- Emitted by accelerating massive objects
 - Cosmic explosions
 - Compact stars orbiting each other
 - Stars gobbling up stars
 - Mountains" on stellar crusts

GW detector at a glance

Quantum noise in Initial LIGO

Origin of the Quantum Noise Vacuum fluctuations

Quantum Optics & Squeezed State Injection

How to squeeze photon states?

 Need to simultaneously amplify one quadrature and de-ampilify the other

$$\langle (\Delta \hat{X}_1)^2 \rangle \sim e^{-2r}$$

 $\langle (\Delta \hat{X}_2)^2 \rangle \sim e^{2r}$

- Create correlations between the quadratures
 - Simple idea → nonlinear optical material where refractive index depends on intensity of light illumination

$$n(I) = n_0 + n_1 I + ..$$

$$n(I) \Rightarrow \phi(z, I)$$

$$\Delta I \Leftrightarrow \Delta \phi$$

S. Vass, A. J. Weinstein, and N. Mavalvala, Nature Physics 4, 472 (2008)

Optomechanics & Radiation Pressure

Optomechanical coupling

- The radiation pressure force couples the light field to mirror motion
- Alters the dynamics of the mirror
 - Spring-like forces → optical trapping
 - Viscous forces → optical damping
 - Tune the frequency response of the GW detector
 - Manipulate the quantum noise
 - Quantum radiation pressure noise and the standard quantum limit
 - Produce quantum states of the mirrors

Classica

Quantum

Classical radiation pressure forces

- Detune optical field from cavity resonance
- Change in mirror position changes intracavity power
 → radiation pressure exerts force on mirror
- Time delay in cavity results in cavity response doing work on mechanics

Path to the quantum regime

For mode of oscillation of the mirror

 $k_B T < \hbar \Omega$

Trapping and cooling Optical trap response Optical cooling

T. Corbitt et al., Phys. Rev. Lett 98, 150802 (2007)

Quantum Radiation Pressure Effects

The experiment grows

ICTO

Fabry-Pérot Michelson length = 1 mfinesse ≈ 8000 circ. power $\approx 10 \text{ kW}$ iLIGO 10

Quantumness in Initial LIGO

Cooling the kilogram-scale mirrors of Initial LIGO

Some other cool oscillators

Toroidal microcavity $\rightarrow 10^{-11}$ g

WG-WGM

 $\rightarrow 10^{-11} \text{ g}$

Micromirrors $\rightarrow 10^{-7}$ g

AFM cantilevers

 \rightarrow 10⁻⁸ g

LIGO $\rightarrow 10^3$ g

SiN₃ membrane

 $\rightarrow 10^{-8}$ g

Quantum optomechanics

- Techniques for improving gravitational wave detector sensitivity
- Tools for quantum information science
- Opportunities to study quantum effects in macroscopic systems
 - Observation of quantum radiation pressure
 - Generation of squeezed states of light
 - Entanglement of mirror and light quantum states
 - Quantum states of mirrors

Amazing cast of characters

MIT

- Keisuke Goda
- Thomas Corbitt
- Christopher Wipf
- Timothy Bodiya
- Sheila Dwyer
- Lisa Barsotti
- Nicolas Smith-Lefevbre
- Eric Oelker
- Rich Mittleman
- MIT LIGO Laboratory

Collaborators

- Yanbei Chen & group
- David McClelland & group
- Roman Schnabel & group
- Stan Whitcomb
- Daniel Sigg
- Caltech 40m Lab team
- Caltech LIGO Lab
- Garrett Cole of Aspelmeyer group (Vienna)
- LIGO Scientific Collaboration

Capturing elusive wave...

Tests of general relativity

- Directly observe ripples of space-time
- Astrophysics

 Directly observe the Black Holes, the Big Bang and objects beyond our current imagination

 Directly observe quantum mechanics in human scale objects

