Measurements of Reactor Neutrinos at Short Distances Ed Blucher University of Chicago

- Motivation for current short-baseline reactor experiments: θ_{13}
- Production and detection of reactor neutrinos
- Experiments to search for θ_{13} : Double Chooz, RENO, Daya Bay
- New calculation of reactor neutrino flux and "reactor neutrino anomoly"
- Summary

1 May 2011

Neutrino mixing and masses

Key questions in neutrino mixing

- •What is value of θ_{13} ?
- •What is mass hierarchy?
- •Do neutrino oscillations violate CP symmetry? $P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta\sin\left(\frac{\Delta m_{12}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{13}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)$
- •Why are quark and neutrino mixing matrices so different?

$$U_{MNSP} \sim \begin{pmatrix} Big & Big & Small ? \\ Big & Big & Big \\ Big & Big & Big \end{pmatrix} \quad \text{vs.} \quad V_{CKM} \sim \begin{pmatrix} 1 & Small & Small \\ Small & 1 & Small \\ Small & Small & 1 \end{pmatrix}$$

 \longrightarrow Value of θ_{13} central to these questions; it sets the scale for experiments needed to resolve mass hierarchy and search for CP violation.

Methods to measure $\sin^2 2\theta_{13}$

• Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \sim 2.5 \times 10^{-3} \text{ eV}^{2}$

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E} + \text{not small terms} (\delta_{CP}, sign(\Delta m_{13}^{2}))$$

NOvA: $\langle E_v \rangle = 2.3$ GeV, L = 810 km

T2K: $\langle E_v \rangle = 0.7$ GeV, L = 295 km

• Reactors: Disappearance $(\overline{v}_e \rightarrow \overline{v}_e)$ at $\Delta m^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$ $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ very small terms}$

Use reactors as a source of $\overline{v_e}$ (<E_v>~3.5 MeV) with a detector 1-2 kms away and look for non-1/r² behavior of the $\overline{v_e}$ rate

• Reactor experiments provide the only clean measurement of $\sin^2 2\theta_{13}$: no matter effects, no CP violation, almost no correlation with other parameters. **Reactors as Antineutrino Sources**

Reactors are copious, isotropic sources of \overline{V}_e .

 β^- decay of neutron rich fission fragments of U and Pu

Example: ²³⁵U fission

→ ~ 200 MeV/fission and ~6 $\bar{\nu}_e$ / fission implies that 3GW_{th} reactor produces ~ 6×10²⁰ $\bar{\nu}_e$ / sec.

To do this calculation correctly, one must consider 235 U, 238 U, 239 Pu, and 241 Pu, account for evolution of the reactor core over the fuel cycle, and consider all of the possible β branches.

Direct measurements of electron spectra from thin layers of ²³⁵U, ²³⁹Pu, and ²⁴¹Pu in a beam of thermal neutrons are used as constraints.

Detection of \overline{V}_e

Inverse β Decay: $\overline{V}_e + p \rightarrow e^+ + n$

~1 IBD event per day per ton of LS per GW thermal at 1 km

Experiments detect coincidence between prompt e⁺ and delayed neutron capture on hydrogen (or Cd, Gd, etc.)

Including E from e⁺ annihilation, $E_{prompt} = E_v - 0.8 \text{ MeV}$

9

Oscillation Experiments with Reactors

Antineutrinos from reactors can be used to study neutrino oscillations with "solar" $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$ and "atmospheric" $\Delta m_{13}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$

Mean antineutrino energy is 3.6 MeV. Therefore, only disappearance experiments are possible.

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E},$$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2.$

Experiments look for non- $1/r^2$ behavior of antineutrino rate.

Oscillation maxima for $E_v = 3.6$ MeV: $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2 \implies L \sim 60 \text{ km}$ $\Delta m_{13}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2 \implies L \sim 1.8 \text{ km}$

Neutrino Oscillation Searches at Nuclear Reactors

Best θ_{13} Limit: Chooz Experiment

m = 5 tons, Gd-loaded liquid scintillator

How can one improve on Chooz Experiment?

- Add an identical near detector
 - Eliminate dependence on reactor flux; only relative acceptance of detectors needed
- Optimize baseline
- Larger detectors; improved detector design
- Higher power reactor sites
- Reduce backgrounds
 - Go deeper and use active veto systems
- Stable scintillator

New Multi-detector θ_{13} Reactor Experiments

Experiment	GW _{th}	Distance Near/Far (m)	Shielding Near/Far (mwe)	Target Mass (tons)	Sensitivity sin ² 2θ ₁₃ (90% c.l.)	Status
Double Chooz (France)	8.4	390/1050	115/300	8/8	0.03	Datataking with far; near in 2012
RENO (Korea)	17.3	290/1380	120/450	16/16	0.02	Start mid- 2011
Daya Bay (China)	17.4	360(500)/ 1985(1615)	260/910	2×2×20 (N) 4×20 (F)	0.01	Start mid- 2012

- Many similarities in detector design and analysis strategy
- Differences in sensitivity come mainly from statistics (mass, reactor power), baseline optimization, and multiple detectors (for Daya Bay) 15

Detectors and analysis strategy designed to minimize relative acceptance differences

Central zone with Gd-loaded scintillator surrounded by buffer regions; fiducial mass determined by volume of Gd-loaded scintillator Neutrino detection by $\overline{V}_e + p \rightarrow e^+ + n$,

n ^mGd \rightarrow ^{m+1}Gd γ s (8 MeV); τ =30 μ sec

Events selected based on coincidence of e⁺ signal (E_{vis} >0.5 MeV) and γ s released from n+Gd capture (E_{vis} >6 MeV).

No explicit requirement on Reconstructed event position; little sensitivity to E requirements.

Events selected based on coincidence of e^+ signal (E_{vis} >0.5 MeV) and γ s released from n+Gd capture (E_{vis} >6 MeV).

Reconstructed e⁺ and n-capture energy

Double Chooz Experiment

Collaboration of ~150 physicists from France, Germany, Spain, Japan, U.K., Russia, Brazil, and U.S.

Double Chooz Detector Design

Double Chooz Far Detector Installation

December 2010: Detector filled, shielding complete, commissioning started

April 2011: Steady data taking; installation of outer veto muon system underway.

DC Preliminary: Contained Event

DC Preliminary: Muon Event

23

Systematic Errors

		Chooz	Double Chooz		
	ν flux and σ	1.9 %	<0.1 %	Two "identical" detectors, Low bkg	
Reactor- induced	Reactor power	0.7 %	<0.1 %		
	Energy per fission	0.6 %	<0.1 %		
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter	
	Volume	0.3 %	0.2 %	Same weight sensor for both det.	
	Density	0.3 %	<0.1 %	Accurate T control (near/far)	
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability	
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS	
	Live time	few %	0.25 %	Measured with several methods	
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %		
	Total	2.7 %	< 0.6 %		

•Double Chooz far detector was filled and began commissioning in December 2010.

•Steady datataking (~90% datataking efficiency) began in April 2011

Sensitivity goal: $sin^2 2\theta_{13} \sim 0.03$

RENO Experiment South Korea

6 reactors span ~1.3 km Total average thermal output ~16.4 GW_{th}

40 physicists from 13 South Korean institutions (1 U.S.)

RENO Layout

RENO Detector

- Inner PMTs: 342 10" PMTs
 - solid angle coverage = 12.6%
- Outer PMTs: ~ 60 10" PMTs

Target: 16 tons

RENO

Finishing PMT installation (2011.1)

RENO

Near and Far Detectors Closed at end of Jan 2011

RENO Projected Sensitivity

Sensitivity goal: $sin^2 2\theta_{13} \sim 0.02$

July 2011: Start of data taking

Daya Bay Reactor Neutrino Experiment

Will have 6 reactor cores with 17.4 $\mathrm{GW}_{\mathrm{th}}$ by the end of this year.

Mountains provide up to 1000 mwe overburden.

250 physicists from Asia, Europe, and U.S.

Antineutrino Detectors

Three-zone cylindrical detector design ٠

- Target: 20 t (0.1% Gd LAB-based LS) -
- Gamma catcher: 20 t (LAB-based LS) -
- Buffer : 40 t (mineral oil) -
- Low-background 8" PMT: 192 ٠
- Reflectors at top and bottom ٠

34

Daya Bay Anti-neutrino Detector Assembly

Installation of first AD at Daya Bay Site

Datataking with first two ADs in Daya Bay Hall this summer

Muon Veto Detectors: Water Cerenkov and RPCs

RPCs in Daya Bay Hall

Daya Bay Projected Sensitivity

Reactor Neutrino Flux and the Reactor Antineutrino Anomoly

Th. A. Mueller et al.``Improved Predictions of Reactor Antineutrino Spectra,'' accepted for publication in Phys. Rev. C, arXiv:1101.2663.

G. Mention et al., ``The Reactor Antineutrino Anomoly,'' accepted for publication in Phys. Rev. D, arXiv:1101.2755.

Mueller et al. have refined method to go from measured 235 U, 239 Pu, and 241 Pu β^{-} spectra (at ILL) to neutrino spectra.

The result is a +3% increase in neutrino flux, on average.

Conversion from Electron to anti-Neutrino Spectra

0.4

0.2

235

Built ab initio

5

Kinetic energy (MeV)

al.) used 30 effective β branches
New method uses all available information on measured nuclei from nuclear databases (~90% info from data bases, remaining ~10% fitted with 5 effective branches)

For L<100m, accounting for correlations, they find $N_{OBS}/N_{EXP} = 0.937 \pm 0.027$

Explanations?

Statistics

 Mistake in new calculation; perhaps uncertainty in flux calculation is larger than estimated

Bias in normalization of ILL experiment (uncertainty quoted as 2%)

•Common systematic bias in reactor experiments •New physics at short baselines. Results are compatible 4th, non-standard neutrino state with Δm^2 >~ 1 eV² and sin²2 θ ~ 0.1

Summary

- Exciting time for short baseline v experiments
- In a couple of years, we should know much more about θ_{13} maybe sooner.
- New reactor flux calculation and "anomoly":
 - Near/far detector experiment is the right way to measure θ_{13}
 - Near detector data from upcoming experiments should be studied closely
 - A measurement of few MeV neutrinos at very short baseline (< 10 m) would be interesting.