Understanding O₂ Electrocatalysis for Clean Energy Technologies

Yang Shao-Horn Department of Mechanical Engineering Department of Materials Science and Engineering MIT, Cambridge, MA 02139, USA http:web.mit.edu/eel

Energy Storage for a Sustainable Future

Current Energy Supply (~90% fossil) → Supply Challenge
→ Unsustainable
→ CO₂ emission

Future Energy Supply (no net carbon)

→ Efficient, clean, sustainable

Bridge the gap Energy (1) Conversion and (2) Storage Technologies

Oxygen Reduction and Evolution Critical to Clean Energy Technologies

Source: Reuter Pictures

Source: http://www.gm-volt.com

H₂/Li/M storage for clean energy technologies

Understanding and using the redox of oxygen is at the heart of clean energy technology development

O₂ Electrocatalysis in Fuel Cells + Li-Air Batteries

A. Débart et al, Angew. Chem. Int. Ed. 47 (2008) 4521

Scientific Challenges

Oxygen Evolution Reaction (OER)

Understand catalytic processes at the molecular level Design new catalysts and materials for energy storage

Electronic Structure => O Binding => ORR Activity

Current understanding of ORR mechanism on Pt

J.K. Norskov, et al, J. Phys. Chem. B 108 46 (2004)

Current Understanding of ORR mechanism on Pt

J.K. Norskov, et al, *J. Phys. Chem. B* **108** 46 (2004)

Current Understanding of ORR mechanism on Pt

J.K. Norskov, et al, J. Phys. Chem. B 108 46 (2004)

OH binding on Pt surface limits the ORR kinetics

J.K. Norskov, et al, J. Phys. Chem. B 108 46 (2004)

Modifying Surface Electronic Structure to enhance ORR activity on Pt-alloy surfaces

Non-noble-metal-containing oxides for ORR at high PHs

D.B. Meadowcroft, Nature 226 847 (1970)

A. Filpi, et al., ECS Transactions 16 (2008)

Perovskites for O₂ reduction and evolution

Objective

Search for ORR activity descriptor on oxide surfaces

 $O_2 + 2H_2O + 4e \Leftrightarrow 4OH^-$

Flexible Chemistry

-LaBO₃(B = Cr, Mn, Fe, Co, Ni) -La_{n+1} B_nO_{3n+1} (n = 1, 2, 3, and infinity) -LaA'BB'O₃ (A- and B-site substitution)

How to assess ORR/OER activity on perovskite powder

Intrinsic ORR activity can be estimated from thin films of oxide powder

Suntivich, J., H.A. Gasteiger, N. Yabuuchi and Y. Shao-Horn, Journal of the Electrochemical Society, <u>8</u>, B1263-B1268 (2010).

Intrinsic ORR activity of perovskites vary greatly

Up to ~4 orders of magnitude

Suntivich, J. et al., Nature Chemistry, 2011

Two types of antibonding d-electrons for TM ions

Janes, R., Moore, E.A., Metal-Ligand Bonding (2004)

d-electron of B ions ≠ ORR descriptor

Suntivich, J. et al., Nature Chemistry, 2011

Using E_g filling as a primary descriptor of ORR activity

Suntivich, J. et al., Nature Chemistry, 2011

Using E_g filling as a primary descriptor of ORR activity

Binding of O₂ on M too strong Surface hydroxide regeneration limiting Binding of O₂ on M too weak displacement of OH- species by O²⁻_{2,ads} limiting

ORR mechanism for perovskites

JB Goodenough, FC Handbook 2003 (vol. 2, pg. 521) Suntivich, J. et al., Nature Chemistry, 2011

Perspectives and open questions

Would the ORR descriptor found for perovskites be applicable for all oxides? Would the ORR descriptor influence OER activity?

Challenges in ORR/OER at high temperatures

[1] Webpage RWTH Aachen, [2] M. Mogensen, P. V. Hendriksen, in: High Temperature Solid Oxide Fuel Cells – Fundamentals, Design, and Applications, Elsevier 2003

High-Temperature ORR/OER on Perovskites

 $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$

Reduced Complexity: a Model System Approach

[1] F. Tiez, A. Mai, D. Stover, Solid State Ionics 179, 2008, 1509-1515 LSC = $La_{0.8}Sr_{0.2}CoO_{3-\delta}$, GDC = Gadolinium doped Ceria, YSZ = Yttria-stabilized Zirconia

Understanding surfaces to enhance ORR/OER activity

[1] G. J. la O' et al., Angew. Chem. Int. Ed. 2010, 49, 5344-5347, [2] E. J. Crumlin, E. Mutoro et al., JPCL 1, 2010, 3149,
[3] E. Mutoro et al., Energy Environ. Sci., 2011, in press (doi:10.1039/C1EE01245B)

Surface decoration: 113-La_{0.8}Sr_{0.2}CoO₃/214-(La_{0.5}Sr_{0.5})₂CoO₄

Surface decoration enhances ORR/OER activity

[1] E. Mutoro et al., Energy Environ. Sci., 2011, in press (doi:10.1039/C1EE01245B), E. J. Crumlin, E. Mutoro et al., JPCL 1, 2010, 3149, [2] G. J. la O' et al., Angew. Chem 2010.

H₂/Li/M storage for clean energy technologies

Understanding and using the redox of oxygen is at the heart of clean energy technology development

Exploring redox of oxygen for new lithium storage technologies

vehicles

Simon and Gogotsi, Nature Materials, 2008

Li-air batteries offering ~5 fold in gravimetric energy vs. Li-Ion batteries

Using O₂ electrocatalysis for Lithium Storage

A. Débart et al, Angew. Chem. Int. Ed. 47 (2008) 4521

PtAu/C exhibits record round-trip efficiency to date

Achieved record round-trip efficiency: 75%

Functionalized O-MWNTs for High-Power Lithium Storage

1) S.W.Lee, B.S. Kim, S.Chen, Y.Shao-Horn, and P.T. Hammond, JACS 2009

2) S.W.Lee, N.Yabuuchi, B.M. Gallant, S.Chen, B.S.Kim, P.T. Hammond, Y. Shao-Horn, Nature Nano. 2010

3) H.R. Byon, S.W.Lee, S.Chen, P.T. Hammond and Y.Shao-Horn, Carbon 2010

4) S.W.Lee, J. Kim, S. Chen, P.T. Hammond, and Y.Shao-Horn, ACS Nano, 2010

5) S.W.Lee, B.M. Gallant, H. R. Byon, P.T. Hammond, Y. Shao-Horn, EES, 2011

Functionalized O-MWNTs for high-power lithium storage

5-10x increase in power relative to Li-ion batteries

5-10x increase in energy relative to supercapacitors

Demonstrated high energy, power and lifetime of nanostructured electrodes for thin-film energy storage Technology licensed to Contour Energy Systems, CA

Oxygen Reduction and Evolution Critical to Clean Energy Technologies

Source: Reuter Pictures

Source: http://www.gm-volt.com

Acknowledgments

O₂ electrocatalysis at high PHs, Jin Sunvtich (MIT), H. A. Gasteiger (TUM) <u>Mechanism discussion</u>: J.B. Goodenough (UT-Austin) Toyota Motor Company DOE BES Catalysis (DE-FG02-05ER15728) Chesonis Family Fellowship

O₂ electrocatalysis for Li-air, Yi-Chun Lu, David Kawabi, Pierre
Claver, Hubert A. Gasteiger (TUM) Zhichuan Xu, Jonathon
Harding, Ethan Crumlin, Robert McGuire
XANES, Jigang Zhou, Lucia Zuin (Canadian Light Source Inc)
XPS: Azzam Mansour (NSWC)
NP synthesis: Kimberley Hamad-Schifferli (MIT)
DOE EERE (BATT Program)
MIT-Ford Alliance
National Science Foundation MRSEC program

O₂ electrocatalysis at HTs, Eva Mutoro, Ethan J. Crumlin (MIT)

STEM: A. Borisevich , D. N. Leonard (ORNL)

PLD: M. D. Biegalski, H. M. Christen (ORNL), C. Ross (MIT)

In situ APXPS: H. Bluhm, Z. Liu, M. Grass (ALS)

German Research Foundation (Research Fellowship) DOE BES (SISGR DE-SC0002633) King Abdullah University of Science and Technology King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabi

