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ABSTRACT

Drell-Yan dimuon pairs are produced in the process, pp̄ → γ∗Z + X, with the sub-
sequent decay of the γ∗/Z into lepton pairs (l+l−). We study the Foward-Backward
Asymmetry Afb of the angular distribution of dimuon events using 6.4 fb−1 of CDF
Run II data, and compare to the CDF Monte Carlo and other theory predictions. We
extract the electroweak mixing angle from the data.

1 Quarks bound in a nucleon

When quarks are bound in the nucleon, the dilepton can be produced with non-zero
transverse momentum. For pp̄ or pp collisions the angular distribution of γ∗/Z vector
bosons decaying to e+e− or µ+µ− pairs is given by:

dσ

d(cos θ)
∝ [1 + cos2 θ + h(θ)] + A4 cos θ (1)

h(θ) =
1

2
A0(M``, PT )(1− 3 cos2 θ) (2)

The qq̄ center of mass frame is well defined when the lepton pair has zero transverse
momentum (PT ). For a non-zero transverse momentum of the dilepton pair, the qq̄
center of mass frame is approximated by the Collins-Soper frame[1].

When integrated over all of cos θ the h(θ) term integrates to zero and the forward
backward asymmetry is given ben Afb = (3/8) A4. However, when there is only a
partial acceptance over a limited range of cos θ, the integrated asymmetry depends
on the cos θ range and on the h(θ,M``, PT ) (or A0) term.

The term h(θ,M``, PT ) is a small QCD correction term which is zero when the
transverse momentum of the dilepton pair is zero.

For quark-antiquark annihilation the angular coefficient A0 is only a function of
the dilepton mass (M``) and transverse momentum (PT ) and is given by:

Aq̄q
0 =

P 2
T

P 2
T +M2

``

(3)
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Figure 1: Comparison of the fit ACDF
0 =

KP 2
T

KP 2
T +M2

``
to the CDF 2.1 fb−1 data in the

e+e− channel (dilepton mass region 66-116 GeV/c2. K = 1.65 ± 0.3 is fits the data.

For the quark-Gluon Compton process an approximate expression for the angular
coefficient A0 as a function of the dilepton mass (M``) and transverse momentum
(PT ) and is given by:

AqG
0 ≈

5P 2
T

5P 2
T +M2

``

(4)

In general, for a combination of both quark-antiquark and quark-Gluon diagrams
we can describe the data by the form:

A0 =
KP 2

T

KP 2
T +M2

``

(5)

The CDF Tevatron results[2] for A0 and A2 function of the dilepton mass (M``)
and transverse momentum (PT ) are shown in Fig. 1. These were extracted from the
first 2.1 fb− e + e− sample of run II. For q̄q processes K=1, and for qG processes,
K is approximately equal to 5. The data are integrated over the Z mass region (66-
116 GeV) . As shown in the figure, the e + e− data are described by K=1.65 ±0.3
This implies that Z production at the Tevatron involves a combination of both q̄q
(K=1) and qG (K≈ 5) processes. The data are in agreement with the predictions
of POWHEG, DYRAD and other fixed order perturbation theory calculations. It is
also in agreement with RESOBS.

In contrast, the CDF default pythia MC is described with K=1. This occurs
because the modeling of the qG processes in the default pythia MC is incomplete.

For the specific case of the cos θ event weighting technique, when we do an analysis
of data events we use K = 1.65 and when we do an analysis of pythia MC events in
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CDF we use K=1. In the extraction of Abf and A4 integrated over all PT this does
not make much difference. However, when we study A4 versus PT , it makes a small
difference in the high PT bins.

2 Simple (conventional) versus event weighting in

cos θcs

There are two ways of extracting Afb and A4 , the simple (conventional way), and
the event weighting technique. The conventional way is

Atotal
fb =

σf − σb
σb + σb

=
3

8
A4 (6)

For full acceptance in cos θcs the term in A0 integrate to zero. However, when
we have a limited range of cos θcs , there are angular acceptance corrections which
depends on the detector acceptance and on A0. These must be determined from MC
and depend both on the physics model, and on the detector acceptance.

At a fixed mass and y, the event weighting techniques automatically corrects for
the cos θcs acceptance of the detector. The only corrections which remain in order to
determine the true Afb and A4 are corrections for detector resolution and final state
radiation. These corrections can also be determined from MC, but are smaller.

If we extract Afb and A4 over a range of mass and y, then the detector acceptance
as a function of mass and y needs to be corrected for. Although the dependence on y is
small, the correction for the y acceptance can be minimized for extractions of Afb and
A4 for fixed range of y which is within the detector acceptance, thus eliminating the
need to extrapolate to large y (e.g. |y| < | for dimuon events).

If the mass distribution in data and MC is the same, then the modeling of
the relative acceptance versus mass is well understood. As mentioned earlier, in
cos θcs event weighting technique, the absolute acceptance in mass and cos θcs cancels
in Afb and A4 . This is important in the analysis of dimuon events for which the
angular acceptance of the detector is limited.

For dimuon events, the acceptance is complicated function of detector η and φand
difficult to model precisely. The cos θcs event weighting technique has the advantage
that it does not depend on the angular acceptance of the detector. In addition, the
event weighting technique results in the reduction of the error in Afb by a factors of
1.2 to 1.4.

3 Simple (conventional) analysis

We begin by discussing the conventional way of doing the asymmetry analysis. If Nf

is in number of events in the forward direction of the quark and Nb is the number of
events in the backward direction of the quark we obtain the following expression for
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From:	
  CDF/EXO/CDFR/10070	
  	
  May	
  10,	
  2010	
  	
  Search	
  for	
  high	
  mass	
  resonances	
  decaying	
  to	
  
muon	
  pairs	
  by:	
  Daniel	
  Whiteson,	
  Kyle	
  Cranmer,	
  Edward	
  Quinlan,	
  	
  Ashutosh	
  Kotwal,	
  et	
  al.	
  	
  
	
  MIsID	
  	
  is	
  what	
  they	
  call	
  QCD	
  background	
  .	
  

WW 38 
ttbar 28.1 
QCD 46.6 
Total back 112.7 

Data 146611 
4 pb-1 
70-110 GeV 

Figure 2: Table from a previous analysis of CDF dimuon sample (taken from
CDF/ANAL/EXOTIC/CDFR/10070), showing that the background in the Z mass
region is of order 100 events our of 140,000. Here, MisID refers to background form
QCD jets.

the total forward backward-asymmetry (Atotal
fb ) and its error (∆Atotal

fb ):

[Afb] =
Nf −Nb

Nf +Nb

=
Nf −Nb

N
=

3

8
A4 (7)

(8)

Nf

Nb

=
1− Atotal

fb

1 + Atotal
fb

Nf =
1 + Atotal

fb

2
N

Nb =
1− Atotal

fb

2
N

∆Afb =
2

N

[
NfNb

N

]1/2

=
3

8
∆A4 (9)

∆Afb =

[
1− (Afb(expected))

2

N

]1/2

=
3

8
∆A4 (10)

where we have used ∆Nf = (Nf )1/2 and ∆Nb = (Nb)
1/2, and N = Nf +Nb. Since

for Poisson statistics the fractional error is (1/Nexpected)
1/2 and not (1/Nobserved)

1/2 ,
we use Afb(expected) in equation 10. For p̄p collisions above the Z mass peak (for a full
cos θcs acceptance) Afb(expected)=0.6. In this region, ∆Afb = 0.800 · (1/N)1/2.
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4 Correcting for background in the simple analysis

In a previous analysis of CDF dimuon sample, the backgrounds in the Z mass region
(66-116 GeV) are very small (of order 100 events out of 140,000), as shown in Fig.
2 taken[3] from CDF/ANAL/EXOTIC/CDFR/10070. Nonetheless, this is how they
affect the analysis.

In the simple analysis, we correct for background in the following way.

Acorr(M) =
(Nf −Bf )− (Nb −Bb)

(Nf −Bf ) + (Nb −Bb)
(11)

where Bf = N background
f expected , and Bb = N background

b expected . We also define the total number events
N = Nf +Nb, the total number of background events B = Bf +Bb, and the fractional
backgrounds δ = B/N , δf = Bf/Nf and δb = Bb/Nb.

We treat the errors on the background as systematic errors. However, even if the
background is very well known, the background still changes the statistical error in
the corrected asymmetry as follows:

∆Acorr =
2

(N −B)

[
Nf (Nb −Bb)

2 +Nb(Nf −Bf )2

(N −B)2

]1/2

(12)

∆Acorr =
2

N(1− δ)

[
NfN

2
b (1− δb)2 +NbN

2
f (1− δf )2

N2(1− δ)2

]1/2

(13)

∆Acorr ≈
2

N(1− δ)
[
NfNb

N

]1/2

(14)

In the last line we made the approximation that δ ≈ δf ≈ δb. Note that the error
is larger than if we just assumed that the background educed the statistical sample
by a factor of (1− δ). This simplified assumption yields

∆Areduced statistics =
2

N −B

[
(Nf −Bf )(Nb −Bb)

N −B

]1/2

(15)

∆Areduced statistics ≈
2

N(1− δ)1/2

[
NfNb

N

]1/2

(16)

Which means that we can obtain a simple formula for the increase in the statistical
error due to background (from what is given in equation 9).

∆Acorr ≈ ∆A2
reduced statistics/∆Afb (17)

where

∆Afb =
2

N

[
NfNb

N

]1/2

=

[
1− (Afb(expected))

2

N

]1/2

(18)

Since the background is about 100 out of 140,000. The correction to the asym-
metry is negligible and the increase in the error is negligible,
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5 The angle event weighting technique

As mentioned eralier, when quarks are bound in the nucleon, the dilepton can be
produced with non-zero transverse momentum. For pp̄ or pp collisions we write the
angular distribution of γ∗/Z vector bosons decaying to e+e− or µ+µ− pairs as:

dσ

d(cos θ)
∝ [1 + cos2 θ + h(θ)] + A4 cos θ (19)

h(θ) =
1

2
A0(M``, PT )(1− 3 cos2 θ) (20)

Each event has a measured value of |cj| = | cos θj|. Since the angular distribution
is know, if we bin the events in bins of |cj| = | cos θj|, we can get a measurement of
A4 from each cos θ bin and average all the measurements of A4. Then we can use Afb

= (3/8) A4 to get Afb . The event weighting technique is equivalent to binning in
cos θ, but is also valid for the case of low statistics. The expressions for combining
events with different |cj| = | cos θj| and values to yield the best average value of Afb

asymmetry are derived in Ref. ?? . The expressions are:

z1,j =
1

2

c2
j

(1 + c2
j + h(θ, PT ))3

(21)

z2,j =
1

2

|cj|
(1 + c2

j + h(θ, PT ))2

Ntotal =
∑

all−events
[1]

A1 =
∑

forward−events
[z1,j] (22)

A2 =
∑

back−events
[z1,j] (23)

B1 =
∑

forward−events
[z2,j] (24)

B2 =
∑

back−events
[z2,j] (25)

[∆A1]2 =
∑

forward−events

[
z2

1,j

]
[∆A2]2 =

∑
back−events

[
z2

1,j

]
[∆B1]2 =

∑
forward−events

[
z2

2,j

]
(26)

[∆B2]2 =
∑

back−events

[
z2

2,j

]
(27)

A = A1 + A1

B = B1−B2

[Afb]
raw =

3

8

B

A
=

3

8

B1−B2

A1 + A2

6



∆A1 = ∆B1 · A1

B1

∆A2 = ∆B2 · A2

B2[
∆Araw

fb

]2
=

[
3

8

]2 1

(A1 + A2)4

[
E12 + E22

]
E22 =

[∆B1]2

B12
(A2B1 + A1B2)2

E22 =
[∆B2]2

B22
(A2B1 + A1B2)2

Here Ntotal is the total number of events. Note that since we add up the forward
and backwards events in separate sums, the weighting factors z1,j and z2,j are functions
of the absolute value | cos θ|.

The | cos θ| event weighting takes care of most of the | cos θ| acceptance and ef-
ficiencies. We still need to subtract the very small background (e.g. QCD, Cosmic
Rays, and EW (e.g τ+τ−, t̄t, WW, WZ, ZZ ), as described below.

In addition, we need to correct for resolution smearing, FSR/radiative corrections
and the fact that the asymmetry is a function of y and the acceptance of the de-
tector is a function of y. We show in an appendix. that corrections for resolution,
FSR/radiative effects can be treated the same as correcting for backgrounds.

6 Correcting for background in the angle event

weighting technique

As mentioned earlier the background in the Z mass region (66-116 GeV) is about 110
events out of 140,000. Nonetheless, this is how they affect the analysis

In the simple analysis, we correct for background in the following way. Acorr(M)
is just a ratio (N f

corr − N b
corr)/(N

f
corr + N b

corr), where N f
corr = N f − N f expected

background, and

N b
corr = N b − N b expected

background. We will treat the errors on the background as systematic
errors. Here the backgrounds are the sum of the background from all sources.

For each specific source of background, we have Monte Carlo samples of forward (f)
and backward (b) background events. The background samples need to be normalized
to the integrated luminosity of the data by a factor F.

N expected
back = F

∑
all−events

[1] (28)

A1background = F
∑

forward−background−events
[z1,j] (29)

A2background = F
∑

back−background−events
[z1,j]

B1background = F
∑

forward−background−events
[z2,j]
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B2background = F
∑

back−background−events
[z2,j]

[∆B1]2background = F
∑

forward−background−events

[
z2

2,j

]
[∆B2]2background = F

∑
back−background−events

[
z2

2,j

]

For each background, we remove the background contributions of to A1, A2, B1,
B2, [∆B1]2, and [∆B2]2 for each of the sources of background, e.g. QCD, EW
(top, τ+τ− etc), cosmic rays, and charge misID (charge misID can be treated as a
background or a dilution since it is very small). This calculation yields the asymmetry
corrected for background, and the error in the asymmetry that we get is the reduced
statistics error.

A1corr = A1 − A1all−backgrounds (30)

A2corr = A2 − A2all−backgrounds

B1corr = B1 −B1all−backgrounds

B2corr = B2 −B2all−backgrounds

[∆B1]2corr = [∆B1]2 − [∆B1]2all−backgrounds

[∆B2]2corr = [∆B2]2 − [∆B2]2all−backgrounds

[Acorr] =
3

8

B1corr −B2corr

A1corr + A2corr

[∆Areduced−statistics]
2 =

[
3

8

]2 1

(A1corr + A2corr)4

[
E12

corr + E22
corr

]
E22

corr =
[∆B1corr]

2

B12
corr

(A2corrB1corr + A1corrB2corr)
2

E22
corr =

[∆B2corr]
2

B22
corr

(A2corrB1corr + A1corrB2corr)
2

[∆Acorr] = [∆Areduced−statistics]
2 /∆Araw

fb

The systematic error in the background is determined by varying the level of the
background sample F f and F b for each background source (within its error).

7 Effect of CTC Alignment on Afb

The electron analysis uses the energy in the calorimeter to determine the mass of the
dilepton pair. Since the calibration of positrons and electrons in the calorimeter is
the same, there is no sensitivity to the alignment of the CTC. The CTC is only used
to determine the sign of the forward or backward leptons.

For dimuons, the momentum is determined from the tracker. In CDF, the direction
of the proton and antiproton is fixed, and the magnet polarity is not changed (unlike
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Figure 3: MC at the generated level (no FSR). Top: Change in the nominal
Afb (black) resulting from a plus (red) and minus (blue) one GeV shift in mass between
positive and negative cos θcs events. Bottom: Change in the nominal Afb (black) when
half the events shifted by +1 GeV and the other half are shifted by -1 GeV.

Dzero which changes their magnet polarity to check for systematics). Therefore, a
CTC misalignment which may be different between positive and negative cos θlab can
result in a shift in the mass distribution which is different for positive versus negative
cos θcs events.

The top of Fig.3 shows what happens at the generator level (no FSR) to the
nominal Afb (black) for a plus (red) and minus (blue) one GeV calibration difference
in the mass distribution between positive and negative cos θcs events. The bottom
of the figure shows what happens to the nominal Afb (black) when half the events
are shifted by +1 GeV and the other half are shifted by -1 GeV (shown in red) .
This indicates that even if on average, the mass distribution is unbiased, the details
of the asymmetry as a function of mass are affected (though the average asymmetry
integrated over the entire Z mass region remains unchanged).

8 The dimuon data sample and cuts

We use 6.5 fb−1 of dimuon data. The cuts that we use are:

1. 66 < M`` <116 GeV/c2
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2. Data uses Larry’s Tuning

3. Opposite sign

4. Had energy < 6 + .028*max(0,p-100)

5. Calorimeter Isolation Et/Pt < .1

6. EM energy < 2 + .0115*max(0,p-100)

7. >=3 axial superlayers with >=5 hits

8. >=2 stereo superlayers with >= 5 hits

9. abs(d0) <2mm

10. COT abs(z0) <60cm

11. CMU abs(delX) <7cm

12. CMP abs(delX) <5cm

13. CMX abs(delX) ¡<6cm

14. Both muons have pt > 20

15. Allowed Topologies: CMUP tight-CMUPtight,CMUPtight-CMX,CMX-CMX,CMUPloose-
CMUPtight,CMUPloose-CMX

9 Momentum Calibration of Data and MC as a

function of cos θ and φ in the lab frame.

Fig. 4 shows Afb as a function of dimuon mass for data as compared to default CDF
pythiaMC. Here, Afb is extracted using the cos θcs event weighting technique for both
data and MC events. Our default is that the momentum in the data is corrected using
Larry’s corrections since the CTC in the data is misaligned. The momenta in MC
are in general not corrected with Larry’s correction since the CTC in the MC is not
misaligned. On the top figure, the data has Larry’s CTC momentum correction (as
it should), and the reconstructed MC does not (as it should). In the bottom figure
the data has Larry’s CTC PT correction (as it should), and as a test of the magnitude
of Larry’s correction, we also apply Larry’s correction to the MC (in practice, this
should not be done).

What we observe in Fig. 4 (top) is that there are mis-calibrations in both data
and MC. What we observe from the test in Fig. 4 (bottom) is that Larry’s momentum
correction has a large effect on Afb .
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Figure 4: Afb as a function of dimuon mass for data as compared to MC. On the
top figure, the data has Larry’s CTC momentum correction (as it should) and the
reconstructed MC does not (as it should). In the bottom figure the data has Larry’s
CTC PT correction (as it should), and as a test of the magnitude of Larry’s correction,
we also apply Larry’s correction to the MC (in practice, this should not be done).
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MC ACCEPTED
<1/pt->/<1/pt+> GENERATED

1.0026 1.0082 1.0073 1.0043
0.9998 1.0021 1.0029 1.0017
0.9990 0.9993 0.9999 0.9997
0.9935 0.9928 0.9964 0.9962

Ratio errors
0.0002 0.0002 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0002

MC ACCEPTED
<1/pt->/<1/pt+> RECONSTRUCTED

1.0384 0.9895 1.0019 1.0537
1.0140 0.9968 0.9837 1.0018
1.0058 1.0061 0.9782 0.9773
1.0036 1.0109 0.9883 0.9791

Ratio errors
0.0002 0.0002 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0002

DATA
<1/pt->/<1/pt+> DATA

0.9985 1.0032 1.0009 1.0027
0.9923 1.0024 0.9980 1.0200
0.9956 0.9888 0.9930 1.0246
1.0023 0.9694 0.9798 1.0384

Ratio errors
0.0039 0.0047 0.0045 0.0040
0.0018 0.0021 0.0023 0.0024
0.0013 0.0021 0.0024 0.0022
0.0041 0.0043 0.0035 0.0037

Figure 5: Top: The ratio of 〈1/ PT 〉 for positive and negative muons in MC for the
generated momenta (after FSR) for accepted events. The ratio is very close to 1,
as it should be, with small differences due to acceptance effects. Middle: The ratio
of 〈1/ PT 〉 for positive and negative muons in MC for the reconstructed momenta.
The deviations which are larger than 1% are shown in red. Bottom: The ratio of
〈1/ PT 〉for positive and negative muons in data. If there is no bias in the data, these
ratios should be the same as for the generated MC events. The deviations which are
larger than 1% are shown in red.
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We now proceed to determine the addition momentum tuning to correct for the
remaining mis-calibrations in data and MC. We determine these momentum tuning
correction in a 4×4 grid in cos θ(lab) and φ(lab).

Fig. 5 (top) we show the ratio of 〈1/PT
−〉 for negative muons and 〈1/PT

+〉 for
positive muons calculated using generated momenta (post FSR) all of the accepted
events. The four rows are bins in φ and the four columns are bins in cos θ. The ratio
is very close to 1, as it should be, with minor differences due to small acceptance
effects.

Fig. 5 (middle) shows the ratio of 〈1/PT
− 〉 for negative muons and 〈1/PT

+ 〉
for positive muons using the reconstructed momenta of MC events. If there is no
bias in the MC, the ratios for the reconstructed quantities should be the same as for
the generated quantities. The deviations which are larger than 1% are shown in red.
There are 10 regions (out of 16) in the cos θ and φ grid for which the deviations are
larger than 1%, and some are larger than 5%.

Fig. 5 (bottom) shows the ratio of 〈1/PT
−〉 for negative muons and 〈1/PT

+ 〉 for
positive muons for the the data. The bottom part of the figure If there were no bias
in the data, these ratios should be the same as for the generated MC events. The
deviations which are larger than 1% are shown in red. There are four regions (out of
16) in cos θ and φ which have deviations which are larger than 1%.

We now apply the additional PT tuning as follows. We find the mean 〈1/ PT
− 〉

and 〈1/ PT
+〉 for positive and negative muons, respectively in each of the 16 cos θ and

φ using the generated momenta (post FSR) for MC accepted events. We also find the
means using the reconstructed momenta for MC accepted events, and do the same
for data events. We then apply multiplicative factors to data and reconstructed MC
events to make the means of reconstructed MC, and reconstructed data the same as
for the generated quantities.

The top part of Fig. 6 shows a comparison of Afb for MC reconstructed events
before (blue) and after (red) the additional PT tuning. The additional PT tuning
results in a significant change in Afb as a function of mass. The bottom part of the
figures shows a comparison of Afb for MC reconstructed after the additional tuning
(blue) compared to Afb for the same events using the generated variables (red). There
is good agreement between the generated Afb and reconstructed Afb in the region of
the Z mass. Note that momentum resolution smearing of events from Z peak to
lower and higher masses is expected to result in a reconstructed asymmetry which is
slightly lower than the generated asymmetry for masses higher than the Z peak and
a reconstructed asymmetry which is slightly lower than the generated asymmetry for
masses lower than the Z peak

The top part of Fig. 7 shows a comparison of Afb for data events before (blue)
and after (red) the additional PT tuning. The additional PT tuning results in only a
small change in Afb in data as a function of mass. The bottom part of the figures
shows a comparison of Afb for the data after the additional tuning (red ) compared
to Afb for reconstructed MC events after PT tuning (blue).

The additional PT tuning results in good agreement in Afb between data and MC
as a function of mass. Note that neither Larry’s momentum correction, nor the
additional PT tuning change Afb and A4 for the integrated sample between 66-116
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Figure 6: Top: A comparison of Afb for MC reconstructed events before (blue) and
after (red) the additional PT tuning. The additional PT tuning results in a significant
change in Afb as a function of mass. Bottom: A comparison of Afb for MC recon-
structed with the additional PT tuning correction (blue) to Afb calculated for the same
events, but using the generated (post FSR) momenta. There is good agreement be-
tween the generated Afb and reconstructed Afb in the region of the Z mass. Note that
momentum resolution smearing of events from Z peak to lower and higher masses is
expected to result in a reconstructed asymmetry which is slightly lower than the gen-
erated asymmetry for masses higher than the Z peak and a reconstructed asymmetry
which is slightly lower than the generated asymmetry for masses lower than the Z
peak.
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Figure 7: Top: A comparison of Afb for data events before (blue) and after (red) the
additional PT tuning. The additional PT tuning results in a small change in measured
Afb as a function of mass. Bottom: A comparison of Afb for the data after the
additional PT tuning (red ) compared to Afb for reconstructed MC events after the
additional PT tuning (blue).
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GeV. This is because the tuning does not move events from positive to negative
cos θ. Therefore, in order to avoid any sensitivity to momentum tuning corrections,
we prefer to extract average values of Afb and A4 values integrated over the Z mass
region (e.g. 66-116) in the extraction of the electroweak mixing angle from the data.
These average values are completely insensitive to PT tuning corrections

Similarly, In the measurement of the unfolded Afb in the muon channel, we plan
to use only 3 wide mass bins bin in the Z mass region (66-80, 80-100, and 100-116
GeV)For masses larger than 116 GeV, the sensitivity of Afb to momentum tuning
and calibration is small (because the change of Afb as a function of mass is small).

10 Appendix: Theory of Angular Distributions

The parton level differential cross sections for dilepton pair production (e.g. Drell-
Yan, Z ′s or W ′s) for qq̄ annihilation can be written as

dσ

d( cosθ)
= C

[
(1 + cos2θ) +B cosθ

]
(31)

where θ is the emission angle of the positive charged lepton relative to the quark
momentum in the center of mass frame. For W and Z bosons B is a parameter that
depend on the weak isospin and charge of the incoming fermions (B=2 for W bosons).
The cross sections for forward events (σf ) and backward events (σb) are given by

σf =
∫ 1

0

dσ

d( cosθ)
d( cosθ) (32)

= C
[(

1 +
1

3

)
+B

(
1

2

)]
σb =

∫ 0

−1

dσ

d( cosθ)
d( cosθ) (33)

= C
[(

1 +
1

3

)
−B

(
1

2

)]
The electroweak interaction introduces the asymmetry (a linear dependence on

cosθ), which can be expressed as

Atotal
fb =

σf − σb
σb + σb

=
3

8
B (34)

The total differential cross sections dilepton pair production (e.g. Drell-Yan, Z ′s or
W ′s) for proton-antiproton annihilation [5, 6, 7, 8, 9] is given by a modified equation:

dσ

dP 2
Tdyd cos θdφ

= C[(1 + cos2 θ)
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+
1

2
A0(1− 3 cos2 θ) + A1 sin 2θ cosφ

+
1

2
A2 sin2 θ cos 2φ+ A3 sin θ cosφ

+ A4B cos θ + A5 sin2 θ sin 2φ

+ A6 sin 2θ sinφ+ A7 sin θ sinφ] (35)

where PT and y are the transverse momentum and the rapidity of the dilepton in the
lab frame and θ and φ are the polar and azimuthal angles of the charged lepton from
the dilepton decay in the Collins-Soper (CS) frame [1].

For reference we present other notations that is used in the literature. If we sum
up negative and positive values of cosθ and integrate over φ some papers use:

dσ

dP 2
Tdyd cos θ

= C(1 +
A0

2
)[1 + α2 cos2 θ + α1 cos θ] (36)

where

α2 = λ =
2− 3A0

2 + A0

, A0 =
2(1− λ)

3 + λ
, α1 =

2A4

2 + A0

and also

dσ

dP 2
Tdyd cos θdφ

= C ′(
1

λ+ 3
)[1 + λ cos2 θ + µ sin2θ cosφ+

ν

2
sin2 θ cos 2φ] (37)

λ =
2− 3A0

2 + A0

, µ =
2A1

2 + A0

, ν =
2A2

2 + A0

And we integrate over cosθ, some papers use:

dσ

dP 2
Tdydφ

= C ′′[1 + β1 cosφ+ β2 cos 2φ+ β3 sinφ+ β4 sin 2φ] (38)

where

β1 =
3πA3

16
, β2 =

A2

4
, β3 =

3πA7

16
, β4 =

A5

4

When integrated over all φ the differential cross section reduces to:

dσ

dP 2
Tdyd cos θ

= C[(1 + cos2 θ) +
1

2
A0(1− 3 cos2 θ) + A4 cos θ] (39)

The angular coefficients are non-zero for finite values of PT , A0 and A2 and are
the same for virtual photons and Z exchange processes. The coefficients A3 and A4

originate from the interference terms. For PT=0 all the angular coefficients are zero,
except for A4.
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the qq̄ process (q + q̄ → γ∗/Z + g), the non-zero transverse momentum originates
from gluon emission by the qq̄ initial state. For the qg process (q + g → γ∗/Z + q),
the boson PT originates from a non-zero transverse momentum recoil of the quark in
the final state.

For the qq̄ process, perturbative calculations show that the coefficients A0, A2
are independent of y and independent of the parton distribution functions. They
originate from pure kinematics and are related to ξ , which is the angle of the proton
(antiproton) beam in the Collins-Soper frame as follows:

Aqq̄
0 = A2 = sin2 ξ =

P 2
T

P 2
T +M2

``

(40)

For the qq̄ process, the above relations remain the same in resummation calcula-
tions [11].

The angular coefficient A0 for the qg diagram was calculated in LO by Linfors
in 1979 publication, [13]. When integrated over all y, A0 and A2 for the qg can be
approximated by:

Aqq̄
0 = A2 =

5P 2
T

5P 2
T +M2

``

(41)

The relation A0 = A2 which is equivalent to 1−λ− 2ν = 0, is known as the Lam-
Tung(LT) relation. It is valid to all orders for the qq̄. At LO it was shown that it is
still true for the sum of qq̄ and qg. This relationship is only valid for spin 1/2 gluons.
The qg diagram at higher orders leads to a small violation of the LT relation[6, 7] (it
makes A2 a little smaller than A0.

In this CDF note we focus on the measurement of A4. For a fixed CM energy, A0

is a function of the dilepton mass, PT and rapidity, and depends on the electroweak
mixing angle. The reason it is a function of rapidity is that A4 has one sign when it
is a results of processes involving quarks in the proton. When the processes involves
sea-antiquarks in the proton, A4 has the opposite sign. Therefore, the antiquark
fraction dilutes the measured value of A4 . At the the fraction of events originating
from the sea-antiquarks in the proton is small. However, the fraction of sea-anitquark
induced events it is a function of rapidity (it becomes smaller at larger rapidity).

The angular coefficients A0, A2, A3 and A4 were measured in the e+e−channel for
the dilepton mass range of 66 to 116 GeV/c2 as shown in Figure 1.

The electron data shows that there at non-zero transverse momentum, the data
are described by a combination of qq and qG diagrams. The parametrization

ACDF
0 =

K P 2
T

K P 2
T +M2

``

(42)

with K=1.65±0.3 provides a good description of the data as shown in Figure 2. This
indicates a combination of qq (K=1) and qG (K=5) processes. In contrast, the CDF
default The pythia MC is described with K=1, indicating the the modeling of the
qG processes is incomplete.
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FIG. 3: Comparison of the measured values of A0, A2, A3

and A4 (for 66 < Mee < 116 GeV/c2), shown with statistical
and systematic uncertainties combined, to theory predictions.
The data points are plotted at the mean PT of the events for
each bin. The last bin corresponds to PT > 55 GeV/c and
no upper limit. The horizontal uncertainty is RMS of the
transverse momenta in each bin. Agreement [29] is found with
the predictions of fewz, and also with dyrad, madgraph,
powheg, and pythia Z +1-jet MC (not shown). The data
do not favor [29] the predictions of default pythia , and vbp.
Also shown are the pure qq̄ → γ∗/Z G annihilation diagram
prediction (Eq. 3), and the qG → γ∗/Z q Compton process
prediction as approximated by Eq. 4.

using data. Figure 2 shows the cos θ distribution for data
and the default pythia prediction and its ratio.

The analysis is performed in five bins of transverse
momentum as shown in Table I. For each transverse mo-
mentum range, data and MC simulated events are binned
in cos θ and φ. The MC events are re-weighted to gener-
ate the expected angular distributions (cos θ and φ) for
a range of values of A0 and A4, and A2 and A3, respec-
tively. The angular distributions from the re-weighted
MC events is compared to the data in the reconstructed
level and the angular coefficients which give a maximum
log-likelihood value are determined as the best coeffi-
cients to describe the data. The A0 and A4 are deter-
mined by the comparison of the data to MC distributions
in cos θ and the A2 and A3 are determined in φ. The
normalization factor of the data to MC events is also in-
cluded as one of fit parameters. The results are shown
in Table I and Fig. 3, where statistical and systematic
uncertainties have been added in quadrature. (The cor-
relation between extracted values of A0 and A2, A3 and
A4 is negligible). The systematic uncertainties originat-
ing from backgrounds, electron identification efficiency,
SVX tracking efficiency, boson PT and rapidity model-
ing, and modeling of detector material are considered.
(The biggest source is the background estimation.) Most
of systematic uncertainties are already discussed in ref-
erence [27] and the effect of these uncertainties on the
shape of the angular distribution is negligible. Therefore,
the uncertainty on the extracted angular coefficients are
dominated by the statistical uncertainties.

The data are in good agreement with the Lam-Tung
relation A0 − A2 = 0, which is expected in QCD with
vector gluons. The values of A0−A2 for the five PT bins
are 0.00± 0.03, 0.04± 0.05, 0.03± 0.07, 0.02± 0.11, and
0.01±0.14 (statistical and systematic uncertainties com-
bined), which average to 〈A0 −A2〉=0.02± 0.02. At low
PT the measured values of A0 and A2 are well described
by the qq̄ → γ∗/Z G annihilation function (Eq. 3). At
high PT the larger values show that both the annihilation
and Compton processes contribute to the cross section
[29]. Our results are in agreement[29] with fixed-order
perturbation theory calculations including dyrad [18],
madgraph [19], pythia Z+1 jet [20], powheg [21],
and fewz [22] (all of these give similar predictions).
We find that the values of A3 and A4 are in agreement
with the predictions of all models (A4 is calculated with
sin2 θW = 0.232).

In summary, we present the first measurement of the
angular coefficients in the production of γ∗/Z bosons
at large transverse momenta, and the first test of the
Lam-Tung relation at high transverse momentum. We
find good agreement with the predictions of QCD fixed-
order perturbation theory, and with the Lam-Tung re-
lation A0 = A2. The measurements presented here are
statistically limited. An analysis with larger samples in
both muon and electron channels is currently under way.

Figure 8: The angular coefficents A0, A2, A3 and A4 as measured in the e+e− channel
with 2.1 fb−1 for the dilepton mass range of 66 to 116 GeV/c2
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Therefore, when we do an analysis of data events we use K = 1.65 and when we
do an analysis of pythiaMC events we use K=1. In analysis of Abf and A4 integrated
over all PT this does not make much difference. However, it makes a small difference
in the high PT bins when we study A4 versus PT .

11 Appendix: Unfolding (correcting for resolution

smearing and FSR)

In the analysis of the data using cos θcs weighting, we primarily compare the data
to a smeared post FSR Monte Carlo. In this case, no unfolding needs to be done.
Similarly, the Afb and A4 integrated over the Z mass region (66-116) are insensitive
to resolution effects.

However, if we want to present unfolded Afb corrected for resolution smearing and
FSR, we need to include unfolding into the event weighting technique.

In the simple analysis, corrections for resolution and FSR are typically done using
a martix inversion technique. However, in the event weighting technique, the events
that smear out of a mass bin, do not affect the asymmetry in a mass bin, they just
reduce the statistics. Therefore, no correction need to be made for events that smear
out of the bin due to FSR and resolution smearing. Events which smear into a mass
bin change the measured asymmetry. The simplest way to handle these events is to
treat them as background.

When we treat the FSR and resolution smearing as a background, the statistical
errors increase. In addition, we need to include the systematic error in the FSR and
resolution smearing background.

We run the full MC, and for each bin we generate a sample of events that come
into a bin from outside the bin (either from resolution smearing, or from FSR). The
number of such events in each bin is labeled N i

smear−in. We do not care where the
events come, or for what reason (FSR or resolution). We also keep track of the
number of events that remained in each bin N i

remain

The MC sample of events that smear into each bin is a background and is treated
as any other background. The background sample is normalized to the data by a
factor N i

data/(N
i
smear−in +N i

remain,
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