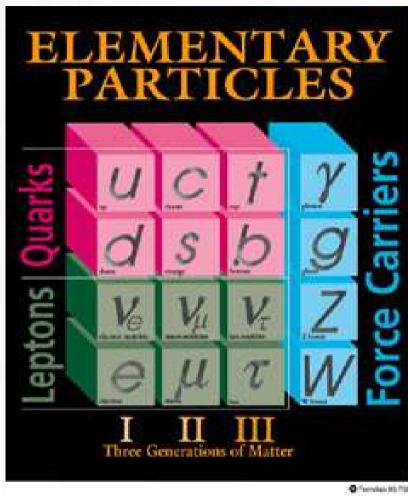
Search for H->WW and measurement of the WW cross

section


Will Parker
University of Wisconsin – Madison
11/14/11

Outline

- Introduction
- Experiment
- Simulation
- Analysis
- Results
- Conclusion

The Standard Model

- Twelve fermions (plus corresponding antiparticles) that make up matter
- Three fundamental forces carried by four vector bosons
- Mass asymmetry between W/Z and photon
- One scalar boson: Higgs Boson, predicted but not yet observed

EW Symmetry Breaking and the Higgs

- A Higgs or Higgs-like mechanism is needed
- Gives mass to the W and Z bosons through spontaneous symmetry breaking
- Predicts the existence of Higgs Boson, which couples to particle mass

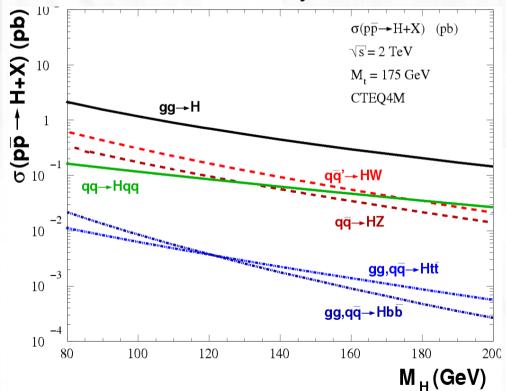
$$\mathcal{L}_{W\!,H} = -\frac{1}{2} W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{1}{4} g^2 v^2 W_{\mu}^{+} W_{\mu}^{-} + \frac{1}{2} (\partial_u H) (\partial^u H)$$
 H Mass
$$-v^2 \lambda H^2 + \frac{1}{2} g^2 v H W_{\mu}^{+} W_{\mu}^{-} + \frac{g^2}{4} H^2 W_{\mu}^{+} W_{\mu}^{-}$$

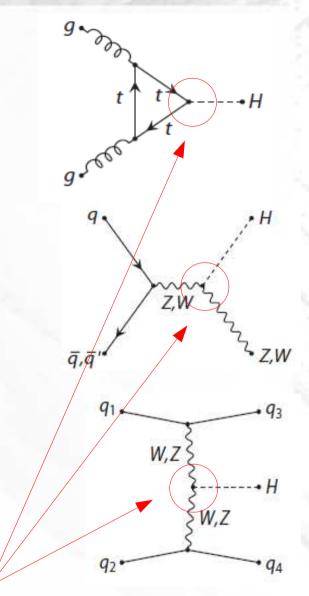
W Mass

Fermions could gain mass by the same method

Mass: $\frac{g_f v}{\sqrt{2}}$ Coupling: $\frac{g_f}{\sqrt{2}}$

 All particles couple to Higgs proportional to their mass **HWW Interaction**

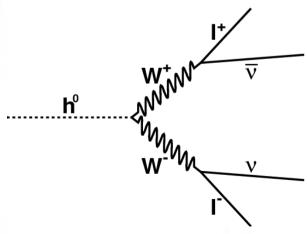

Will Parker

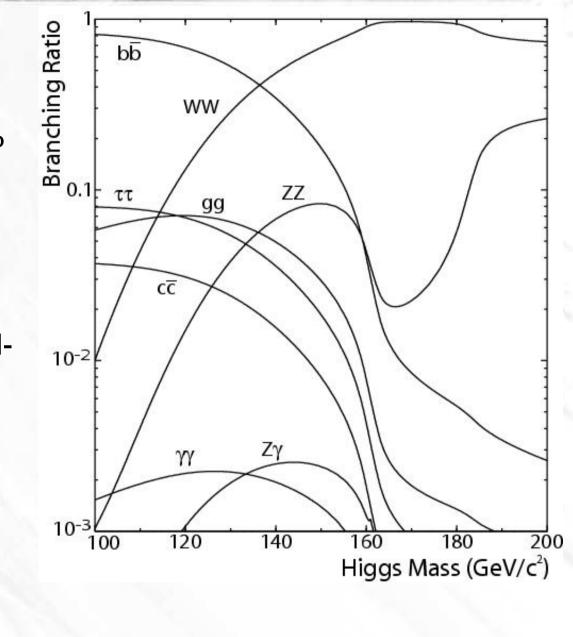

U.W. Madison

11/14/11

Higgs Production at CDF

- gg fusion is dominant overall
- Here we study H->WW+2 jets
- Associative production and vector boson fusion become comparable and distinctive due to extra gauge boson or forward jets



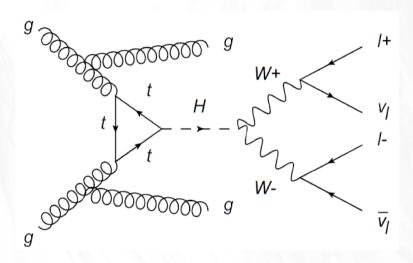


Coupling proportional to mass

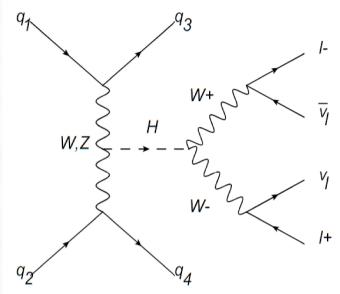
Higgs Decay

- H->WW is dominant above 123 GeV
- Leptonic W decay (33% BR) is easier to study
- Require W->e,μ or W->τ->e,μ
- Leptons can come from H->WW or associated gauge boson

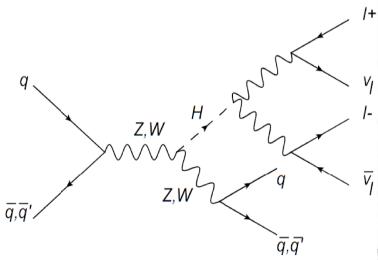
Will Parker


U.W. Madison

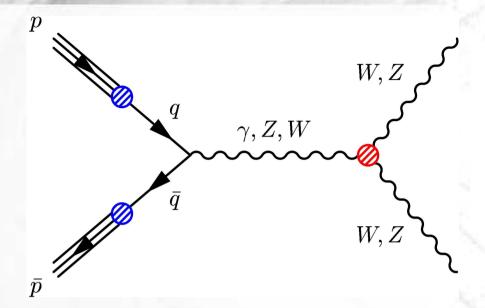
11/14/11

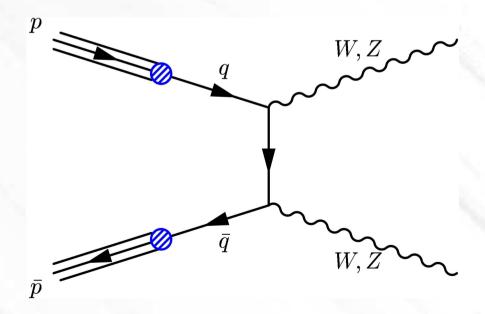

Final State

Require exactly two leptons, Met, and 2 or more jets

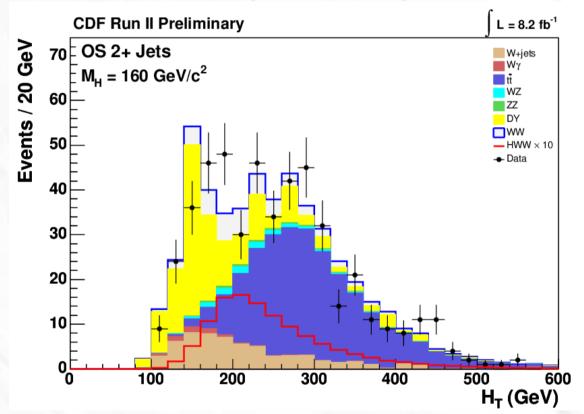

Gluon fusion with ISR

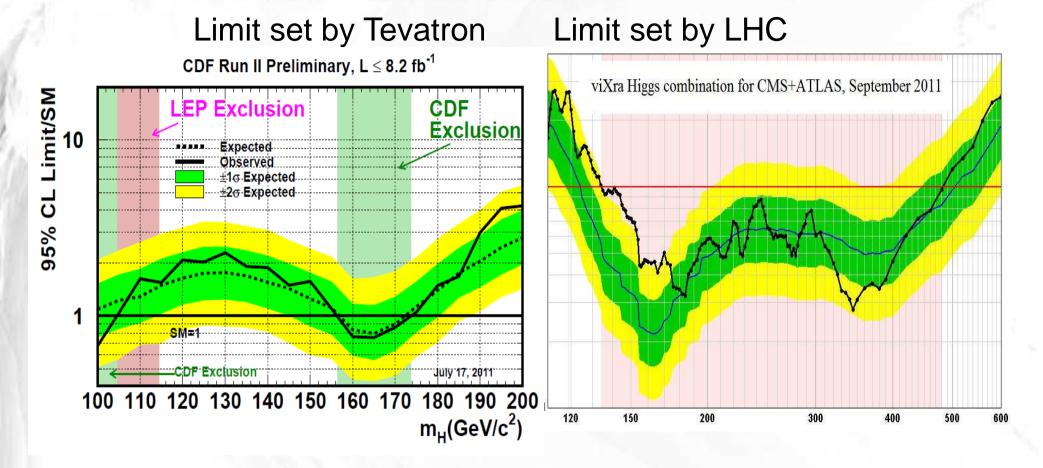
Vector boson fusion




Associative production with hadronic decay

WW Production


- Significant background for Higgs search
- pp->WW+2jets is a NNLO process
- Tests NNLO MC that is needed for Higgs search
- Triple gauge coupling
- Sensitive to new physics


Dominant Backgrounds

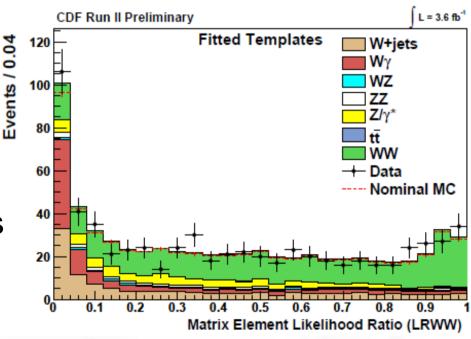
- ttbar (t->Wb)
- Drell-Yan (Jet mismeasurement resulting in missing Et)
- WW
- W+jets
- W+gamma
- WZ
- ZZ

Scalar sum of transverse energy of leptons, met, and jets

Current State of Higgs Exclusion

LHC observes an excess around 130 GeV, where H->WW is still the most powerful contributor to the CDF analysis

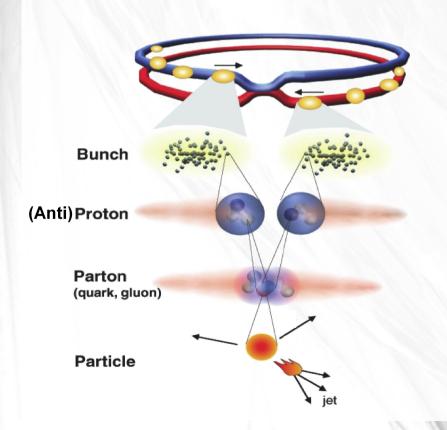
10 Will Parker

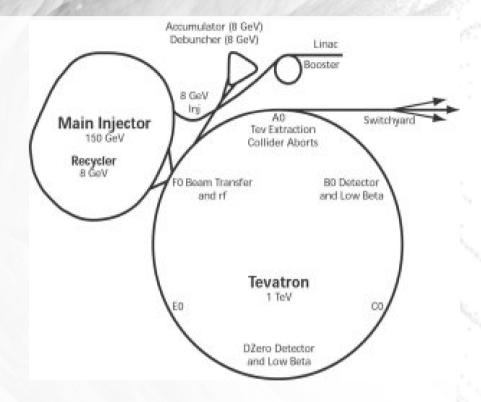

Limitations of Previous Analysis

- Used Pythia to generate H->WW signal and most backgrounds
- Used NLO MC to generate WW backgrounds
- MC is tuned to properly model the reconstructed momentum of the mother particles
- Does not reproduce the kinematics of the individual jets
- Dijet masses can be used to detect W or Z bosons, or the signature forward jets of VBF
- We update the background MC to NNLO where appropriate
- No measurements of massive diboson production with 2 jets have been performed before. This work will perform the first measurement as a necessary validation of the MCs predictions.

Current WW Cross Section Measurement

- CDF
- Uses 3.6 fb^-1
- Used matrix element based likelihood ratios
- Only events with no reconstructed jets
- 12.1+/-0.9 (stat) +1.6/-1.4 (syst)
- Our measurement
- Uses full dataset
- Uses NNLO MC
- Measures differential cross section as a function of jet energy and multiplicity

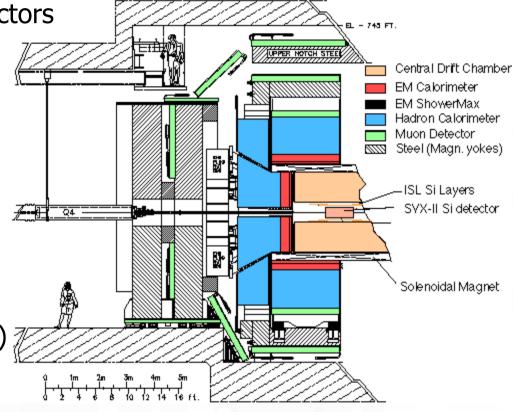

- D0
- Uses 224-252 pb^-1
- Cut based analysis
- Uses Pythia to model WW
- 13.8 +4.3/-3.8 (stat) +1.2/ 0.9 (syst)



CDF data and templates

The Tevatron

- Proton-antiproton collider
- 1km radius → 21 µs revolution time
- Sqrt(s) = 1.96 TeV



- 36 bunches per beam
- 3E11 protons and 0.8E11 pbars per bunch
- Luminosity: 3E32 cm^-2 s^-1
- 9.97 fb^-1 of data collected
- This analysis uses 8.2 fb^-1

The CDF Detector

- Silicon Detector
 - Silicon microstrip detectors
 - $|\eta| < 2.0$
- Central Outer Tracker
 - Drift chamber
 - $|\eta| < 1.0$
- EM(H) Calorimeters
 - Pb(Fe)/scintillator
 - $|\eta| < 3.6 \text{ (central+plug)}$
- Muon detectors
 - Wire chambers in proportional mode
 - Combined coverage out to $|\eta| < 1.5$
 - Scintillator tiles provide triggering and timing information

Electron Detection and Identification

Two Categories

	TCE				
Region	central				
Fiducial	track fiducial to CES				
Track p_T	$\geq 10 \; (5ifE_T < 20)$				
Track $ z_0 $	$\leq 60 \text{ cm}$				
# Ax SL (5hits)	≥ 3				
# St SL (5hits)	≥ 2				
Conversion	$\neq 1$				
E_{HAD}/E_{EM}	$\leq 0.055 + 0.00045 * E$				
Iso/E_T	≤ 0.1				
Lshr	≤ 0.2				
E/P	$< 2.5 + 0.015 * E_T$				
signed CES ΔX	$-3 \le q * \Delta X \le 1.5 \text{ cm}$				
CES $ \Delta Z $	$< 3 \mathrm{~cm}$				
Track	Beam constrained				

Or a likelihood discriminant using many of the same variables

	PHX/PEM					
Region	Plug					
Pes2DEta	$1.2 < \eta < 2 \ (2.8 \text{ PEM})$					
$_{ m Had/Em}$	<= 0.05					
PEM3x3FitTower	true					
$PEM3x3\chi^2$	<= 10					
Pes5x9U	>=0.65					
Pes5x9V	>=0.65					
Iso/Et	<= 0.1					
$\Delta R(Pes, PEM)$	<= 3.0					
PHX only						
Track Match	True					
NSiHits	>= 3					
Track $ Z0 $	<=60cm					
PEM	Not above PHX track requirements					

Only use PHX

Stubbed Muons

Four categories of stubbed muons: CMUP, CMU, CMP, CMX

	CMUP/CMX					
CMU Fid	x-fid< 0 cm z -fid< 0 cm					
CMP Fid	x-fid < 0 cm z -fid $<$ -3cm					
CMX Fid	x-fid $< 0 cm z$ -fid $<$ -3cm					
E_{em}	<= 2 + max(0, (p-100) * 0.0115)					
E_{had}	<=6 + max(0, (p-100) * 0.028)					
Iso/Pt	<= 0.1					
NAxL(5 hits)	>=3					
NStL(5 hits)	>=2					
Track $ Z_0 $	<=60cm					
Track $ D_0 $	<= 0.2cm (0.02cm if NSiHit > 0)					
χ^2/dof	<= 4 (3 if run <= 186598)					
$ \Delta X_{CMU} $	<=7cm					
$ \Delta X_{CMP} $	<=5cm					
$ \Delta X_{CMX} $	<=6cm					
$ ho_{exit}$	> 140 cm if CMX					
CMP veto	No Bluebeam in CMP for run < 154449					
CMX veto	No CMX for run < 150144, No Miniskirt, No Keystone					
Arches	Arches only for all run range					
	Arches removing wedge 14 on West Side for run > 190697					
Tracks	BcTrk (Larry's Correction if Data)					

A CMP(CMU) muon should not be fiducial to the CMU(CMP or CMX)

Stubbless Muons

Minimum ionizing track pointing to CES/PES

14.700	CMIOCES/CMIOPES
E_{em}	<= 2 + max(0, (p-100) * 0.0115)
E_{had}	<=6 + max(0, (p-100) * 0.028)
Iso/Pt	<=0.1
Uniqueness	Not a CMUP or CMX muon
Track $ Z_0 $	<=60cm
Track $ D_0 $	<= 0.2cm (0.02cm if NSiHit > 0)
$E_{em} + E_{had}$	> 0.1 GeV
Central	Track CES Fiducial
NAxL(5 hits)	>=3
NStL(5 hits)	>=3
χ^2/dof	$\leq = 3$
	BcTrk (Larry Correction if Data)
Forward	Track PES Fiducial
Cot Hit Fraction	> 0.6
	No beam constriant on IO tracks

17 Will Parker U.W. Madison 11/14/11

Other Leptons

- CMXMsKs: Same as CMX muon, but in the Miniskirt or Keystone detectors
 - -75° < Φ < 105° (for |η| < ? (Note says 0)), 225° < Φ < 315°
- BMU: Same as CMIOPES muon, but with a stub in one of the IMU detectors
- CrkTrk: Similar to CMIOCES, but no minimum ionizing calorimeter or CES fiduciality requirements

	CrkTrk			
Iso/Pt	<=0.1 using CDF Muon or			
	$<=0.1$ using nearest CDF EMObj with $\Delta R < 0.05$			
Track $ Z_0 $	<=60cm			
Track $ D_0 $	<= 0.2cm (0.02cm if NSiHit > 0)			
χ^2/dof	$\leq = 3$			
NAxL(5 hits)	>= 3			
NStL(5 hits)	>= 3			
Uniqueness	Not a CMUP or CMX muon			
Is in Crack	Not Track CES or PES Fiducial			
Conversion	! = 1			
	BcTrk (Larry Correction if Data)			

Muon Coverage

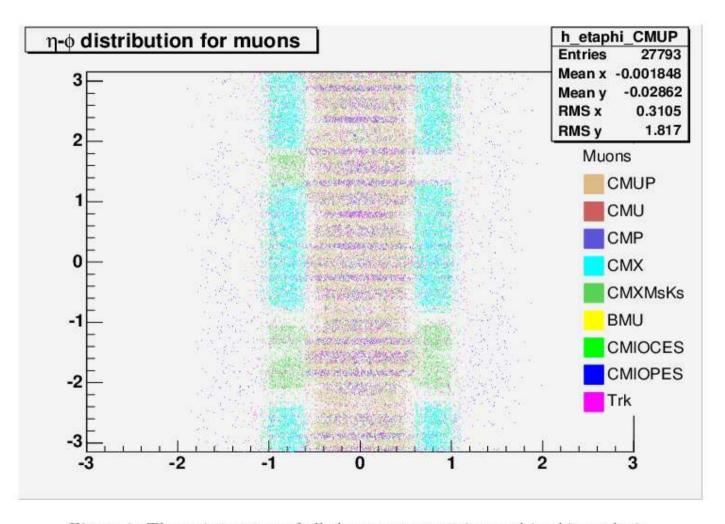
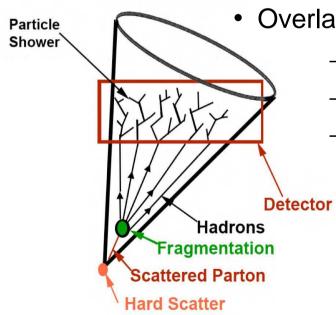
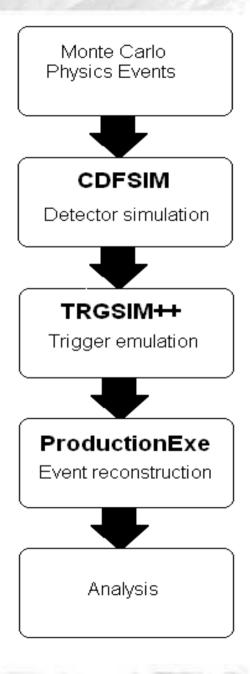



Figure 1: The η - ϕ coverage of all the muon categories used in this analysis.

Jet Identification

- Jets leave tracks in silicon and deposit energy in calorimeters
- JETCLU reconstructs the jet from its energy deposits
 - Find seed towers with Et > 1 Gev
 - Form preclusters of radius 0.5 in η-Φ space
 - Find Et weighted center of cone, form clusters of radius 0.5 from towers with Et > 100 MeV
 - Iterate until tower list is unchanged
 - Ratcheting: Once added, towers are not removed
 - Overlap:
 - Total overlap: the smaller cluster is absorbed
 - Overlap > 0.75: the clusters are combined
 - Overlap < 0.75: the overlap is assigned to the closest center



Generation of Physics Events

- Alpgen
 - Tree-level matrix element calculator
 - Emphasis on high jet multiplicites
 - Interface to Pythia for showering
 - Generates diboson and Drell-Yan events
- Pythia
 - Leading order MC
 - Used for ttbar and ggH events (Other higgs also?)
- Wy generated with Baur ME generator, passed to Pythia
- W+jets sample comes from data with fake leptons (not MC)

Detector Simulation, Event Reconstruction

- Monte Carlo events are passed to CDFSim
- Uses Geant 3, simulates CDF detector
- TRGSIM++ simulates trigger response
- ProductionExe reconstructs events
 - Identical to data reconstruction
- Passed to analysis code

22 Will Parker U.W. Madison 11/14/11

Corrections to the Monte Carlo

$$\frac{\sigma \times \mathcal{B} \times \epsilon_{\text{filter}} \times \epsilon_{i}^{\text{trg}} \times s_{i}^{\text{lep}} \times \epsilon_{\text{vtx}} \times \mathcal{L}_{i}}{N_{i}^{\text{gen}}(|Z_{0}| < 60 \text{ cm})}$$

- σ: Cross section
- β: Branching fraction
- ε_filter: Filter efficiency
- ε^trg: Trigger efficiency
- s^lep: Lepton ID scale factor
- ε_vtx: Z vertex position requirement efficiency (run dependent)
- L: Luminosity of dataset (dependent on lepton category)
- N_gen: What is this?

Other corrections

- WW: rescaled to account for box diagrams
- ggH: reweighted to match HqT spectra

Systematic Uncertainties

6.0%	6.0%	6.0%				
6.0%	6.0%	6 00%				
		0.070	10.0%			
-8.2%						
4.2%						
	10.0%	10.0%	10.0%		10.0%	
-14.8%	-12.9%	-12.1%	-1.7%	-29.2%	-22.0%	
					10.0%	
			3.2%			
						28.0%
7.3%	7.3%	7.3%	7.3%	7.3%		
	4.2%	4.2% 10.0% -14.8% -12.9%	4.2% 10.0% 10.0% -14.8% -12.9% -12.1%	4.2% 10.0% 10.0% 10.0% 10.0% -14.8% -12.9% -12.1% -1.7% 3.2%	4.2% 10.0% 10.0% 10.0% 10.0% -14.8% -12.9% -12.1% -1.7% -29.2% 3.2%	4.2% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 3.2%

Uncertainty Source	$gg \rightarrow H$	WH	ZH	VBF
Cross Section				
Scale	67.5%			
PDF Model	29.7%			
Total		5.0%	5.0%	10.0%
Acceptance				
Scale (leptons)	3.1%			
Scale (jets)	-6.8%			
PDF Model (leptons)	4.8%			
PDF Model (jets)	-12.3%			
EWK Higher-order Diagrams		10.0%	10.0%	10.0%
Jet Energy Scale	-17.0%	-4.0%	-2.3%	-4.0%
Luminosity	7.3%	7.3%	7.3%	7.3%

- Because ggH and WW are dominant signal and background for combined analysis, they are treated more carefully
- Cross Section: Theoretical uncertainties
- Acceptance: Luminosity, higher order effects, trigger and lepton ID efficiencies

Validation

Which plots?

Will Parker