

Search for a Charged Higgs Boson in Single Top Quark Production at DØ

Liang Li University of California, Riverside

On Behalf of the DØ Collaboration

Physics Motivation

Discovery of charged Higgs boson is an unambiguous evidence for new physics

- No "charged" Higgs boson in standard model
- Identical final state as s-channel single top quark electroweak production (Phys. Rev. Lett. 98,181802(2007))

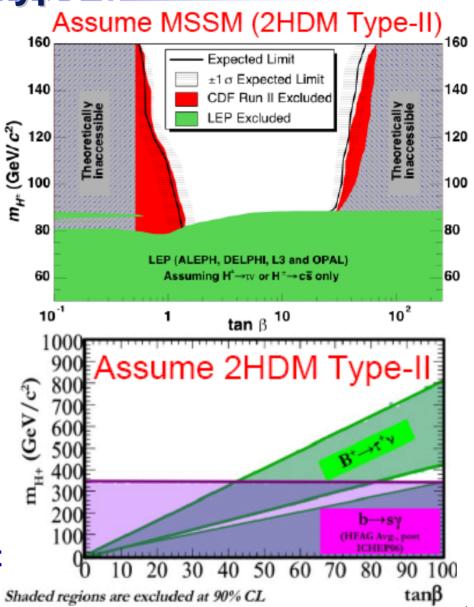
Theoretical Background

Extension of SM Higgs

• Two-Higgs Doublet Model (2HDM)

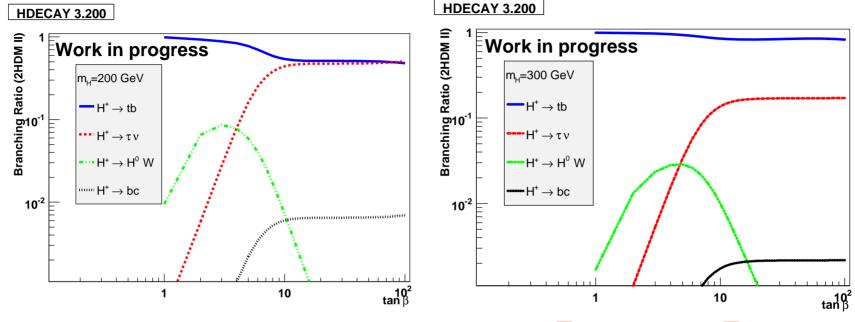
$$\phi_1 = \begin{pmatrix} 0 \\ v_1 \end{pmatrix} \qquad \phi_2 = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \tan \beta = \frac{v_1}{v_2}$$

- Leads to five physical Higgs bosons: two neutral scalars h⁰ and H⁰, one neutral pseudoscalar A⁰ and two charged scalars H⁺, H⁻
- 2HDMs differentiated by strategies used to avoid FCNC
 - Type-I: One doublet gives mass to all quarks and leptons
 - Type-II: One doublet gives mass to up-type quarks and neutrinos; Other doublet gives mass to down-type quarks and charged leptons (e.g. MSSM)
 - Type-III: Two doublets contribute to mass of quarks and leptons, ξ is the top-charm mixing parameter [H.-J. He and C.-P. Yuan, PRL 83 (1999) 28]


Search for Charged Higgs Boson at D0, L. Li (UC Riverside)

Existing Constraints on H⁺ 2HDM Type-II

- Direct search: m_{H+} < m_{top}
 - LEP
 - e⁺e⁻ → H⁺H⁻
 - Limited by WW bkg
 - Tevatron
 - $p\overline{p} \rightarrow \overline{t}t$ and $t \rightarrow H^+b$


Indirect search

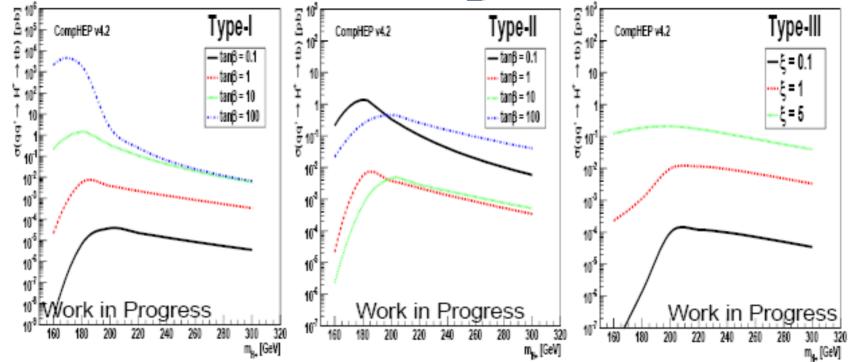
- B-factories
- H⁺ loop contributions to
 - $b \rightarrow s \gamma$
 - $B^+ \rightarrow \tau^+ \nu$
- Assume absence of other sources of new physics at electroweak scale

Search for Charged Higgs Boson at D0, L. Li (UC Riverside)

Direct Search for Heavy H+ at DØ

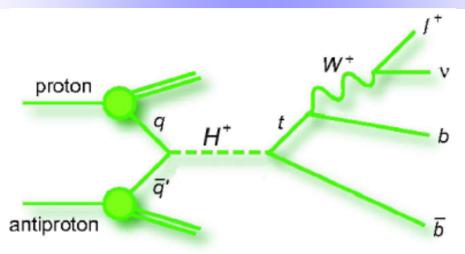
First direct search for heavy H⁺ via $q\bar{q} \rightarrow H^+ \rightarrow t\bar{b}$

- tb decay channel dominates for large region of parameter space (above plots: $m_{H_+} = 200$, 300 GeV in 2HDM Type-II)
- For the first time explore a "heavy" charged Higgs mass region m_{H+} > m_{top}
- Use the same selection of single top quark events in 0.9 fb⁻¹
 DØ "single top evidence" analysis

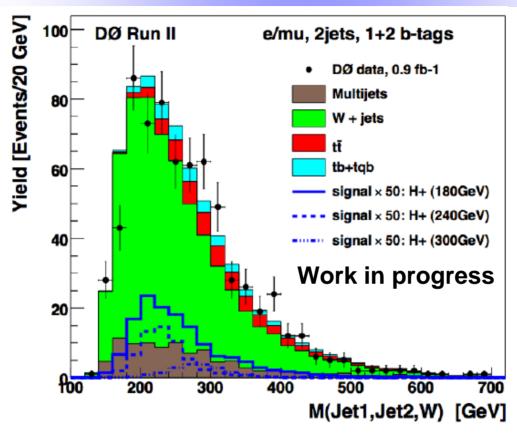

Signal Modeling

• Use CompHEP to simulate $p\overline{p} \rightarrow H^+ \rightarrow t\overline{b}$

$$\mathcal{L} = \frac{g_w}{2\sqrt{2}} V_{ij} H^+ \bar{q}_i \left[g_L^{ij} \left(1 - \gamma^5 \right) + g_R^{ij} \left(1 + \gamma^5 \right) \right] q_j$$

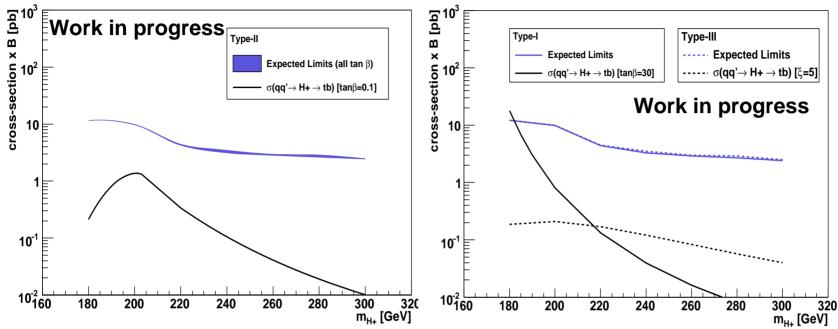

- To be as model independent as possible, produced lefthanded samples with $g_L^{ij} = 1, g_R^{ij} = 0$ and right-handed samples with $g_L^{ij} = 0, g_R^{ij} = 1$, combine them in different proportions to simulate a desired 2HDM with a predetermined polarization
 - Type-I: proportion is equal (1:1) for all tanβ
 - Type-II: proportion varies with $tan\beta$
 - For tan β > 10, right-handed coupling dominates so that the fraction of left-handed sample < 10⁻⁵
 - For tan β < 0.1, left-handed coupling dominates so that the fraction of right-handed sample < 10⁻⁵
 - For 0.1 < tan β < 10, the fractions are in transition: special case is 1:1 when tan β = 1
 - Type-III: right-handed coupling dominates, the fraction of left-handed sample < 10 $^{\text{-5}}$ for all ξ
- Mixture of left- and right-handed samples does not take into account interference term ~ $g_L g_R$
 - Analysis not sensitive to small change in kinematics

CompHEP H⁺ Cross Sections Times Branching Fraction


- H⁺ production cross section times branching fraction calculated with CompHEP generator vs. m_{H_+} via $q\bar{q} \rightarrow H^+ \rightarrow t\bar{b}$
- Cross sections can be sizable: $\sigma x \beta \sim 10$ pb (Type-I), ~ 0.5 pb (Type-II) with tan β = 100 , ~ 0.1 pb (Type-III) with ξ = 5
- Cross section decreases with $m_{\rm H_{^+}}$ due to the limited amount of energy in the CM
- Produced samples for $m_{H_{+}} = 180, 200, 220, 240, 260, 280, 300 \text{ GeV}$

Event Selection

- Same event selection of the "single top evidence" analysis
- One isolated electron or muon
 - Electron p_T > 15 GeV, | η | < 1.1
 - Muon p_T > 18 GeV, | 𝔤 | < 2.0
- Missing transverse energy > 15 GeV
- Exactly two jets (best signal/background ratio)
 - Leading jet $p_T > 25$ GeV, $|\eta| < 2.5$
 - Second Leading jet $p_T > 20$ GeV, $|\eta| < 3.4$
- At least one b-tagged jet


$H^+ \rightarrow t \overline{b}$ Reconstructed Invariant Mass

 Reconstructed invariant mass (j1, j2, W) showed to be the single most sensitive variable

- electron-channel and muon-channel combined, with one or two-btags
- Signal: Type-III model for $m_{H_+} = 180, 240,300$ GeV (scaled by 50)
- Used to construct binned likelihood function

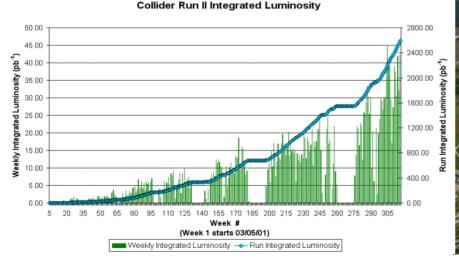
Expected Cross Section Limits

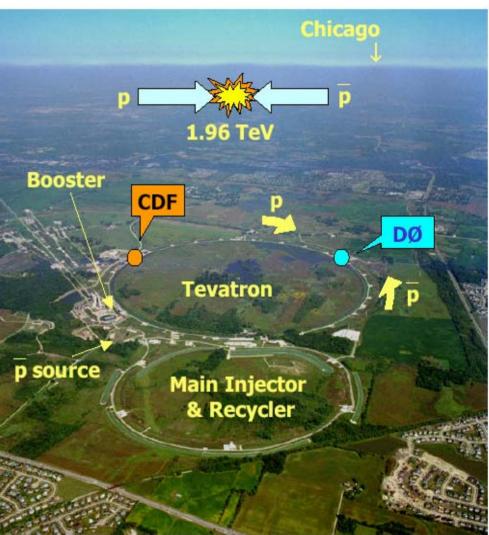
- Used binned likelihood method with Bayesian statistics to calculate 95% C.L. upper limits on the signal production cross section times branching fraction of $H^+ \rightarrow t\bar{b}$
- Left: Type-II expected limits with predicted cross section for $tan\beta = 0.1$
- Right: Type-I and III expected limits with the predicted cross sections for tan β = 100 and ξ = 5 respectively
- Take into account all systematics and correlations

Model Parameter Constraints

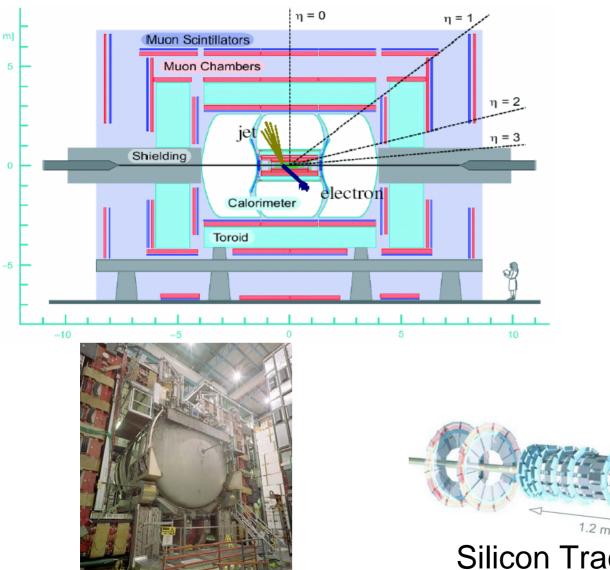
- Compare expected cross-section of different models to observed limits to constraint model parameter space (results coming soon)
 - Require charged Higgs width < detector resolution
 - Exclusion region for 2HDM Type-I
 - For Type-II, not sensitive enough to exclude regions of $tan\beta < 100$
 - For Type-III, H⁺ width depends quadratically on ξ , limits the ability to exclude regions in m_{H+} and ξ parameter space

Summary


First search for charged Higgs decaying to *tb* final state


- No evidence for the existence of a heavy charged Higgs bosons has been found
- Upper limits set on the production cross section times $H^+ \rightarrow t \overline{b}$ branching fraction for Type-I, II and III 2HDMs
- Exclusion region of parameter space for 2HDM Type-I
- Expect increased sensitivity from future analysis and a larger data set

Backup Slides


The Fermilab Tevatron

- Highest energy accelerator currently in operation
- Experiments at D0 and CDF
- Data delivered: >3fb⁻¹
 Goal of Runll is 4-9fb⁻¹

The D0 Experiment

Tracking


- Silicon + fiber tracker
- 2T magnetic field solenoid
- Pre-shower detectors

Calorimeter

Liquid argon (EM+HAD)

Muon system

- Wire chambers
- 1.8 T iron toroid

Systematics

			Unique for t	nis analyses	
	H^+	H ⁺ signal		Background	
	1 b-tag	2 b-tag	1 b-tag	2 <i>b</i> -tag	
Components for Normalization		/			
Initial state parton contribution	10.0	10.0	_		
$Luminosity^a$	6.1	6.1	6.1	6.1	
cross section ^a Same as	16	16	15.0 - 18.0	15.0 - 18.0	
branching fraction ^a for single	1.0	1.0	1.0	1.0	
Matrix method ^b top MC		—	18.2 - 20.7	26.5 - 27.6	
Primary vertex ^a	2.4-3.0	2.4 - 3.0	2.4 - 3.0	2.4 - 3.0	
Lepton ID^{α}	5.5 - 7.4	5.5 - 7.4	5.5 - 7.4	5.5 - 7.4	
Jet ID^a	1.5	1.5	1.5	1.5	
Jet fragmentation ^a	5.0	5.0	5.0-7.0	5.0 - 7.0	
Trigger ^a	3.0 - 6.0	3.0 - 6.0	3.0-6.0	3.0 - 6.0	
Components for Normalization and	l Shape				
Jet energy scale ^a	1.5 - 10.3	0.6 - 10.7	0.3 - 20.1	0.8-19.7	
$Flavor-dependent TRFs^{\circ}$	1.1 - 3.2	11.8 - 13.2	1.8 - 7.5	12.0 - 16.1	
Statistics	0.4-0.7	0.4 - 1.2			
^a Does not apply for W +jets or multiple ^b Applies only for W +jets and multiple ^c Does not apply for multijets backgroup	ets backgrounds	Evaluated u	ısing +/- 1 σ		