Search for Higgs Bosons Produced in Association with W Bosons at CDF

Jason Slaunwhite The Ohio State University on behalf of the CDF Collaboration

SM: Higgs Production / Decay

- Higgs is source of Electroweak Symmetry Breaking in SM
- Higgs mass is
 - $M > 115 \text{ GeV}/c^2$ (direct)
 - $M < 160 \text{ GeV}/c^2$ (Electroweak fit)

- Current Direct searches look for ggH, WH, ZH (small $\sigma < 1$ pb)
- In the low mass range $(M_{\mu} < 135 \text{ GeV}/c^2)$ Decay to bb dominates
- We will focus on WH to lvbb

Tevatron + CDF

- Collides protons and antiprotons
- 1.96 TeV center of mass energy
- Record lumi: 3.13 x 10³² /cm²/s
- Integrated lumi: > 3 fb⁻¹

- CDF experiment: 600+ scientists
- Multipurpose detector Records Tevatron Collisions

Analysis Strategy

- Select events with WH topology
 - W to (e, μ)+ ν
 - H to bb (two b-quark jets)
- Estimate backgrounds
 - W+jets (including W+bb)
 - Top production (single and pair)
 - QCD (events with fake leptons)
- Devise discriminant: maximize sensitivity
- Likelihood fit to search for an excess
- If no excess observed, set a 95% confidence limit

WH Signature and Selection

- Trigger Electron or Muon
 - Pt > 20 GeV
 - Central leptons $|\eta| < 1.1$
 - Forward (plug) electrons 1.1 < $|\eta|$ < 2.0 Adds 10% relative to central
- Neutrino
 - Missing Transverse Energy (MET) > 20 GeV

- Forward Electrons: QCD veto to reject fakes
 - Angular cuts, MET > 25 GeV
- Two Jets
 - $E_{_{T}} > 20 \text{ GeV}$
 - $|\eta|$ < 2.0

B-tagging

- B hadrons have a long lifetime, look for jets with secondary vertices (b-tagging)
- Use three tagging algorithms to maximize acceptance
 - Secondary Vertex tagging (secvtx) iterates through combinations of tracks looking for 2nd vertex
 - Jet Probability tagging (jet prob) compares track impact parameter to primary vertex resolution
 - Neural Network flavor separator (NNtag) applied to secvtx tags
 - Increases purity of tags
- Separate search in each tag category

Background Estimate

W+jets: Estimate tagged amount from observed number of pretag events

W+light flavor: from pretag using false tag rate

W+heavy: from pretag using a b-tag rate

EWK+Top: estimated using theory x-sec and MC acceptance

Non-w: Estimated from MET and isolation sidebands

We use only 2-jet events Other jet bins provide cross check

	1		
Njet	2jet	3jet	>=4jet
Pretag Events	32242	5496	1494
Mistag	$3.88 {\pm} 0.35$	2.41 ± 0.24	1.62 ± 0.14
Wbb	37.93±16.92	14.05 ± 5.49	$7.39{\pm}2.93$
$Wc\bar{c}$	2.88 ± 1.25	$1.52{\pm}0.61$	1.15 ± 0.47
$t\bar{t}$ (6.7pb)	19.05 ± 2.92	54.67±8.38	94.93 ± 14.56
Single top(s-ch)	$6.90 {\pm} 1.00$	2.28 ± 0.33	$0.61{\pm}~0.088$
Single top(t-ch)	1.60 ± 0.23	1.43 ± 0.21	0.50 ± 0.07
WW	$0.17 {\pm} 0.02$	$0.15 {\pm} 0.02$	$0.16 {\pm}~0.02$
WZ	2.41 ± 0.26	$0.68 {\pm} 0.07$	$0.16 {\pm}~0.02$
ZZ	$0.06 {\pm} 0.01$	$0.06 {\pm} 0.01$	$0.02{\pm}0.001$
$Z->\tau\tau$	$0.25 {\pm} 0.04$	$0.19{\pm}0.03$	$0.06{\pm}0.01$
nonW OCD	$5.50{\pm}1.00$	$2.56{\pm}0.48$	1.02 ± 0.22
Total Bkg	80.62 ± 18.75	79.99±10.92	107.63 ± 15.15
WH signal (120 GeV)	$0.94{\pm}0.11$	Control region	Control region
Observed Events	83	88	118

 $L(int) = 1.9 \text{ fb}^{-1}$

2 tight Secvtx tagged events

4/29/2008

Background Estimate (2)

- Observed data agrees with expectation
- Backgrounds can float within uncertainties in search

Separating Signal from Background

- Backgrounds are overwhelming even in purest tag category (double secvtx) and most sensitive shape (dijet mass)
- We combine 6 variables with an artificial **Neural Network (NN)** to optimize our sensitivity
- The NN is iteratively trained to distinguish WH events from W+jets and top background
 - Exploits correlations between kinematic variables
 - 10% improvement in sensitivity over fitting dijet mass

6 NN input variables

4/29/2008

J. Slaunwhite

Neural Network Output

- NN improves expected sensitivity by 10% over dijet mass
- Fit NN output, find no evidence for signal, so set 95% CL

95%

Expected and Observed Limits

150

Expected and observed limits agree quite well

- Observed limit is 8.2 (expect 7.3) at $M_{u} = 115 \text{ GeV}/c^{2}$
 - Most sensitive low mass Higgs search
- Improves 1 fb⁻¹ result by factor of 2.2
 - Lum. Factor: 1.4
 - Additional 60% from btagging, NN discrim, forward ele's

130

140

Higgs Mass (GeV/c²)

120

110

Summary

- WH to lvbb is currently the most sensitive low-mass Higgs search
- Updated Result for Winter Conferences (Jan 2008) $w/1.9 \text{ fb}^{-1}$
 - Added more data (and leptons, taggers)
 - Improved analysis techniques (Neural Networks)
- We are continuing to pursue improvements
 - Matrix Element Discriminant
 - MET+Jet triggered events
 - Adding more data
- Ultimately, our hope for SM Higgs sensitivity lies in a combined search. The success of the search at the Tevatron depends on each channel pursuing every improvement!

Backup: Tevatron Combination

4/29/2008

J. Slaunwhite

Backup: CDF combination

95% CL Limit/SM 10⁵ WHIvbb 1.9/fb Expected ZHvvbb 1.7/fb Expected ZHIIbb 1/fb Expected Hτ τ 2/fb Expected HWWIIvv 2.4/fb Expected CDF for 1-2.4/fb Expected CDF $\pm 1\sigma$ 10 1 180 120 140 160 200 Higgs Mass (GeV/c²)

CDF II Preliminary

J. Slaunwhite