

Neutrino Experiment

Wei Wang (on behalf of the Daya Bay Collaboration) Pheno08, University of Wisconsin-Madison, Apr 28, 2008

Outline

- Neutrino oscillation and the search for θ_{13}
- The Daya Bay neutrino experiment
 - The design of the Daya Bay experiment
 - The simulation and the systematic budget
 - Timeline and current status
- •Conclusions

- θ_{13} is the gateway to the lepton CP-V. Its value is crucial for the planning of the next generation appearance experiments for CP
- Two ways to measure θ_{13}
 - Short-baseline reactor experiments: $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)$
 - Long-baseline appearance experiments:

$$P_{\nu_{\mu} \to \nu_{e}} = \left| \sin \theta_{23} \sin 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} - aL} \right) \sin(\Delta_{31} - aL) e^{-i(\Delta_{32} + \delta_{CP})} + \cos \theta_{23} \sin 2\theta_{12} \left(\frac{\Delta_{21}}{aL} \right) \sin(aL) \right|^{2}$$

Current Limits on θ_{13}

The Daya Bay Réactor Power Plant Southern China, 50 km from Hong Kong

2 near-sites + 1 far-site 8 identical 20t detectors **To reach ~0.01 in sin²2θ**₁₃

- Increase statistics
 - powerful sources, large detectors, high detection efficiency
- Strengthen the signal
 - optimize the baselines
- Reduce systematic uncertainties
 - reactor related: using near-far detector arrangement
 - detector related: using "identical" detectors
- Suppress backgrounds
 - go deeper underground
 - both passive and active veto systems

Antineutrino Detection

0.1% Gd doped liquid scintillator as target

Baselines of the Daya Bay Experiment

The Design of the Detectors

- 3-zone design: Gd-LS, LS & mineral oil 192 PMTs+ top/bottom reflectors
- 20 t target mass: 0.1% Gd doped LS
- submerged in water Cherenkov/RPC veto

10

Detector Performance Simulation

- Detector simulation with GEANT4
- Detection efficiency
 - 1 MeV cut for prompt positrons >99%
 - 6 MeV cut for delayed neutrons ~91%

Detector Systematic Uncertainty Control

Some examples:

- Acrylic vessels and liquid scintillator
 - manufactured and filled in pairs with a common storage tank
- Target mass
 - load cells to measure the target mass to 0.1%
 - flow meter during filling 0.1%
 - overflow tank liquid level monitoring with ultrasonic devices
- Energy calibration to reach relative uncertainty 0.1%
 - automated calibration: ⁶⁸Ge(positron), ²⁵²Cf(neutron) & LED
 - being practiced on the prototype: ¹³³Ba(0.356 MeV), ¹³⁷Cs(0.662 MeV), ⁶⁰Co(1.17+1.33 MeV), ²²Na(1.022+1.275 MeV), Pu-C(6.13 MeV), ²⁵²Cf(neutron)

The Systematic Summary

Detector Uncertainty Sources		Baseline	Goal	Chooz Experience	
Number of protons	5	0.3%	0.1%	0.8%	
Detector Efficiency	Energy cut	0.2%	0.1%	0.8%	
	H/Gd ratio	0.1%	0.1%	1.0%	
	Time cut	0.1%	0.03%	0.4%	
	Neutron Multiplicity	0.05%	0.05%	0.5%	
	Trigger	0.01%	0.01%	0.01%	
	Live time	<0.01%	<0.01%	<0.01%	
Total uncertainty		0.38%	0.18%	1.7%	
		Two det relative un	ector certainty	One detector absolute uncertain	

The Daya Bay Schedule

- Daya Bay in construction (CD2/3a review passed in Jan 2008)
- Feb 19, 2008 civil construction first blast
- Mar 15, 2008 surface assembling building construction started
- Oct 2009, the two Daya Bay near hall detectors start data taking
- June 2010, all detectors in place, data taking with the full Daya Bay
- Then we tell you $\theta_{13}!$

- θ₁₃ is the gateway to CP-V physics in lepton sector. Its value is crucial for the planning of next generation neutrino experiments for CP-V measurements.
- •The Daya Bay neutrino experiment is designed to reach sensitivity of ~0.01 in $\sin^2 2\theta_{13}$. It is the most sensitive reactor neutrino experiment in construction.
- •The full Daya Bay neutrino experiment will start data taking in June 2010.

The Daya Bay Collaboration

Asia	America	Europe	Total
17 institutions	14 institutions	3 institutions	207 collaborators
125 members	73 members	9 members	

More Systematic Uncertainties

Reactor Systematic Uncertainty	Value
reactor-related correlated uncertainty	2%
reactor-related uncorrelated uncertainty	2%
shape uncertainty of the neutrino spectra	2%

Rackground Types	B/S Value		
background types	DYB	LA	Far
the uncertainty of the accidental background events	<0.2%	<0.2%	<0.1%
the uncertainty of the fast neutrons induced by cosmic muons	0.1%	0.1%	0.1%
the uncertainty of the background events induced by ⁸ He/ ⁹ Li	0.3%	0.2%	0.2%

