Measurement of A_{FB} and extraction of $\sin^2\theta_W$ using $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ events at DØ

Junjie Zhu State University of New York @ Stony Brook For the DØ Collaboration

PHENO 2008

April 28, 2008

Introduction

• Vector and axial-vector coupling of fermions to the Z bosons:

$g_V = I_f^3 - 2Q_f \sin^2 \theta_W$				$n^2 \theta_W$	$g_A = I_f^3$		
Fermion			I_{f}^{3}	$\mathbf{Q}_{\mathbf{f}}$	$\mathbf{g}_{\mathbf{V}}$	g _A	
u	С	t	1/2	2/3	$(1/2 - 4/3 \times \sin^2 \theta_W) \sim 0.191$	1/2	
d	S	b	-1/2	-1/3	$(-1/2 + 2/3 \times \sin^2 \theta_W) \sim -0.345$	-1/2	
v _e	ν_{μ}	v_{τ}	1/2	0	1/2	1/2	
е	μ	τ	-1/2	-1	$(-1/2 + 2 \times \sin^2 \theta_W) \sim -0.036$	-1/2	

 θ^* -dependent cross sections:

 $d\sigma/d\cos \theta^* = A \times (1 + \cos^2 \theta^*) + B \times \cos \theta^*$

A and B depend on I_{f}^{3} , Q_{f} and $sin^{2}\theta_{W}$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{\sigma(\cos\theta^* > 0) - \sigma(\cos\theta^* < 0)}{\sigma(\cos\theta^* > 0) + \sigma(\cos\theta^* < 0)} = \frac{3B}{8A}$$

Directly probing the Z-quark and Z-lepton couplings
 2008-4-28 Junjie Zhu

STONY BROWK A_{FB} at e⁺e⁻ collider and hadron collider

- Precise measurement around Z pole
- Hard to reach very high energies
 (> 200 GeV)
- New resonance (Z', LED etc) can interfere with Z and γ (M. Carena *et al.*, PRD 70 093009 (2004))

Weak mixing angle $\sin^2\theta_w$

 A_{FB} is sensitive to $\sin^2\theta_W$ ($\sin^2\theta_W^{eff}$ includes higher order corrections) • LEP A_{FB}^{b} and SLD A_{LR}^{c} : off by 3σ in opposite direction

• NuTeV $\sin^2\theta_w$ result: 3σ away from the global EW fit

Weak mixing angle $sin^2\theta_W$ (cont.)

DØ detector

 Silicon Microstrip Tracker and Central Fiber Tracker (Tracks |η| < 3.2)
 Central and endcap calorimeters (Electrons |η| < 4.2) Junjie Zhu

Event selection

Run II data: $1065 \pm 65 \text{ pb}^{-1} (\mathbb{Z}/\gamma^* \rightarrow ee)$	
Two electrons satisfy:	Mass
$\blacklozenge pT > 25 \text{ GeV}$	$\frac{(Ge}{50}$
\blacklozenge Isolated with large EM fraction	60 - 70
\blacklozenge Shower shape consistent with that	70 - 75 - 75 - 75 - 75 - 75 - 75 - 75 -
of an electron	81 -
$50 < M_{ee} < 500 \text{ GeV}$	86.5 - 89.5 -
Look at CC and CE events	92 -
35,626 events after selection	97 - 105 -
558 events with $130 < M < 500$ GeV	115 -
Δ measured in 1/1 mass bins	130 - 180
T _{FB} measured in 14 mass onis	250 -

Mass range	CC		CE	
(GeV)	Forward	Backward	Forward	Backward
50 - 60	69	78	15	16
60 - 70	104	158	51	91
70 - 75	96	117	64	93
75 - 81	191	235	172	293
81 - 86.5	749	763	843	970
86.5 - 89.5	1388	1357	1860	1694
89.5 - 92	2013	1918	2543	2214
92 - 97	2914	2764	3132	2582
97 - 105	686	549	867	470
105 - 115	153	97	243	88
115 - 130	101	39	167	61
130 - 180	91	33	202	69
180 - 250	31	13	53	16
250 - 500	14	15	17	4

Signal and Backgrounds

• Signal events:

- PYTHIA events with 15 < M < 1000 GeV
- ◆ Passed through the GEANT simulation of DØ detector
- \blacklozenge Efficiencies, energy scale and resolution tuned to agree with data

• Backgrounds:

- Electroweak backgrounds measured using GEANT MC simulation:
 - $\langle Z/\gamma^* \rightarrow \tau\tau, W+X, WW, WZ, tt$
 - Negligible for most mass bins
- ♦ QCD multijet backgrounds measured using real data:
 - Invert electron shower shape requirements
 - \blacklozenge 0.9% for the whole mass bins

M_{ee} distribution

$\cos\theta^*$ distribution

$sin^2 \theta^{eff}_{W}$ Result

- Extraction of $\sin^2 \theta^{\text{eff}}_{W}$ using PYTHIA:
 - \blacklozenge Obtained from backgrounds-subtracted A_{FB} distribution
 - Compared with A_{FB} templates according to different values of $\sin^2 \theta^{eff}_{W}$ generated with PYTHIA and GEANT-based MC simulation
- Higher-order QCD and EW corrections estimated using ZGRAD2 program (U. Baur *et al.*, PRD 57, 199 (1998); PRD 65, 033007 (2002))
 - $= \sin^2 \theta^{ff}_W = 0.2327 \pm 0.0018 \text{ (Stat.)} \pm 0.0006 \text{ (syst.)}$
 - Systematic uncertainties dominated by PDFs (0.0005) and EM energy scale/resolution (0.0003)
- Our result agrees with the global EW fit
- Uncertainty comparable with the uncertainties from LEP inclusive hadron charge asymmetry (Q^{had}_{FB}) (0.0012) and NuTeV measurement (0.0016)

A_{FB} Unfolding

- ◆ Raw A_{FB} → Unfolded A_{FB} (compare with theoretical predictions easily)
 - Detector resolution
 - Acceptance and selection efficiencies
 - Charge mis-identification
- Procedure tested by comparing the true and unfolded spectrum generated using pseudo-experiments
- Systematic uncertainty on the unfolded A_{FB}
 - Corrections used for unfolding
 - \blacklozenge Electron energy scale and resolution
 - ◆ Backgrounds
 - ◆ PDFs

Unfolded A_{FB}

$M \to (C \circ V)$	Predict	$ed A_{FB}$	Unfolded A		
$m_{ee}/(Gev)$	PYTHIA	$_{\rm ZGRAD2}$	Officiated A_{FB}		
54.5	-0.293	-0.307	$-0.262 \pm 0.066 \pm 0.072$		
64.9	-0.426	-0.431	$-0.434 \pm 0.039 \pm 0.040$		
72.6	-0.449	-0.452	$-0.386 \pm 0.032 \pm 0.031$		
78.3	-0.354	-0.354	$-0.342 \pm 0.022 \pm 0.022$		
84.4	-0.174	-0.166	$-0.176 \pm 0.012 \pm 0.014$		
88.4	-0.033	-0.031	$-0.034 \pm 0.007 \pm 0.008$		
90.9	0.051	0.052	$0.048 \pm 0.006 \pm 0.005$		
93.4	0.127	0.129	$0.122 \pm 0.006 \pm 0.007$		
99.9	0.289	0.296	$0.301 \pm 0.013 \pm 0.015$		
109.1	0.427	0.429	$0.416 \pm 0.030 \pm 0.022$		
121.3	0.526	0.530	$0.543 \pm 0.039 \pm 0.028$		
147.9	0.593	0.603	$0.617 \pm 0.046 \pm 0.013$		
206.4	0.613	0.600	$0.594 \pm 0.085 \pm 0.016$		
310.5	0.616	0.615	$0.320 \pm 0.150 \pm 0.018$		

◆ Stat and syst uncertainties are comparable near Z-pole

Stat uncertainty dominates at high mass

2008-4-28

Conclusions

• Measure A_{FB} and extraction of $\sin^2 \theta^{eff}_W$ using 1.1 fb⁻¹ DØ RunII data • A_{FB} measurement:

- Unfolded A_{FB} agrees with SM predictions
- ◆ About ten times more data used than previous results
- $\Rightarrow sin^2 \theta^{eff}_W$ extraction:
 - $= \sin^2 \theta^{eff}_W = 0.2327 \pm 0.0018 \text{ (stat.)} \pm 0.0006 \text{ (syst.)}$
 - Result agrees with the global EW fit
 - Only electron channel used, the precision is comparable with the uncertainty of LEP Q^{had}_{FB} and that of NuTeV measurement
 - ♦ With ~ 8fb⁻¹ data, using e + µ channels with CDF, expected uncertainty will be comparable with WA uncertainty
- Will benefit from the improvements in current MC generators incorporating higher order QCD and EW corrections

BACKUP

Fermion			$\mathbf{g}_{\mathbf{V}}$	g _A	$\mathbf{A_f}$	$\partial A_f / \partial \sin^2 \theta_W$
u	С	t	0.191	0.5	0.66	-3.5
d	S	b	-0.345	-0.5	0.94	-0.6
v _e	v_{μ}	v_{τ}	0.5	0.5	1.00	0
e	μ	τ	-0.036	-0.5	0.16	-7.9

- ◆ Left- and right-handed couplings:
- Fermion asymmetry parameter:

S: $g_V = g_L + g_R$, $g_A = g_L - g_R$ $A_f = 2g_V g_A / (g_V^2 + g_A^2)$

• At e^+e^- collider:

• Forward-backward asymmetry: $A_{FB}^{f} = (\sigma_{F}^{f} - \sigma_{B}^{f})/(\sigma_{F}^{f} + \sigma_{B}^{f}) = 0.75A_{e}A_{f}$

 Left-right F/B asymmetry (direct measurement of final-state coupling) A^{LR}_{FB} = [(σ^L_F-σ^R_F)-(σ^L_B-σ^R_B))]/[(σ^L_{F+}σ^R_F)+(σ^L_{F+}σ^R_F)] = 0.75P_eA_f

 Left-right asymmetry: A_{LR} = (σ_L-σ_R)/(σ_{L+}σ_R) = P_eA_e

Measurement Techniques used at SLD and LEP

• Measurement of A_{LR} , A^{FB}_{LR} , A^{l}_{FB} at SLD:

Excludes electron mode to avoid the added complexity of correcting for t-channel interference

- \blacklozenge Determination of the beam polarization
- Measurement of A^{l}_{FB} at LEP

• Measurement of P^{τ} (τ polarization)

- Measurement of A^{b}_{FB} , A^{c}_{FB}
 - Use lepton tag: *P* and P_T of leptons can be used to assign a probability that the lepton is a *b* or a *c* quark
 - \blacklozenge Sign of the lepton tags the quark charge

• Measurement of Q^{had}_{FB} :

• Use momentum-weighted jet charge to tag the quark charge

Relies on MC to determine the relative abundance of the different quark species

$sin^2\theta^{eff}{}_W$ depends on scale

- Moller scattering
- v-nucleon scattering_
- Atomic parity violation in Cesium

