Unitarity and Dark Matter in the Private Higgs Model

C.B. Jackson Brookhaven National Lab

- Motivation
- Survey of the Model
- Perturbative Unitarity and the PH model
- Private Higgs Dark Matter (PHDM)
- Indirect Detection of PHDM

Motivation

- "Gi-normous" hierarchy in the fermion mass spectrum
- <u>Quark sector</u>: Top quark is 10⁵ times heavier than up quark! (top special?)
- Only one Higgs doublet (e.g., SM):

mass hierarchy \rightleftharpoons Yukawa hierarchy

- Possible explanations?
 - <u>SUSY</u>:Yukawa unification in S0(10) GUTs
 - <u>ExDim</u>: "location, location, location, ..."
- Something simpler?

The Private Higgs (PH) Model (Porto and Zee, arXiv:0712.0448)

- <u>The Main Idea</u>:
 - Introduce one "private" Higgs doublet per quark ("Democratic Higgs"?)
 - Construct SSB pattern s.t. all Yukawa couplings of order one
- PH doublets (φ_q) have same $SU(2) \times U(1)$ quantum numbers as SM Higgs
- Also, introduce a gauge singlet scalar S (for reasons given below)
- Impose set of six separate discrete symmetries K_q where:

$$U_R \rightarrow - U_R \ (D_R \rightarrow - D_R)$$
, $\phi_q \rightarrow - \phi_q$, $S \rightarrow -S$

• Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM-H} - \sum_{q} (y_D^{PH} \overline{Q}_L \phi_D D_R + y_U^{PH} \overline{Q}_L \tilde{\phi}_U U_R) + \partial_\mu S \partial^\mu S + \sum_{q} [(D_\mu \phi_q)^\dagger D^\mu \phi_q - V(S, \phi_q)],$$

The PH Potential and EWSB

$$\begin{split} V(S,\phi_q) \ &= \ \frac{\lambda_S}{4} \bigg(S^2 - \frac{v_d^2}{2} \bigg)^2 + \sum_q \bigg(\frac{1}{2} M_{\phi_q}^2 \phi_q^{\dagger} \phi_q + \lambda_q (\phi_q^{\dagger} \phi_q)^2 - g_{sq} S^2 \phi_q^{\dagger} \phi_q \bigg) \\ &- \ \sum_{q \neq q'} \bigg(\frac{\gamma_{qq'}}{\sqrt{2}} v_s S \phi_q^{\dagger} \phi_{q'} + a_{qq'} \phi_q^{\dagger} \phi_{q'} \phi_q^{\dagger} \phi_{q'} + b_{qq'} \phi_q^{\dagger} \phi_q \phi_{q'}^{\dagger} \phi_{q'} + c_{qq'} \phi_q^{\dagger} \phi_{q'} \phi_{q'}^{\dagger} \phi_q \bigg) + h.c. \end{split}$$

- Top PH plays the role of the SM Higgs (i.e., responsible for m_W and m_Z)
- Use vev of S and g_{st} coupling to drive EWSB:

$$\frac{1}{2}M_{\phi_t}^2 - g_{st}v_s^2 \equiv \mu_t^2 < 0$$

- Non-top PH fields acquire vev's in slightly different manner
- Use vev's of S and top PH... along with cubic term $\gamma_{qq'}$:

PH-enomenology

- Lighter the quark... heavier its PH partner ("up" PH ~ 10² - 10³ TeV)
- To interest of LHC:
 - Two light scalars: *h*⁰ and *K*⁰
 - Heavy Scalar H⁰, charged scalar H[±] and pseudoscalar A_b

- H⁰, H[±] and pseudoscalar A_b all have masses ~ I-2 TeV and O(I) Yukawa couplings to bottom quarks
- For small mixing between top PH and S (angle = β):
 - h^0 has same properties as SM Higgs
 - *K*⁰ provides a good candidate for Dark Matter (DM)!

Perturbative Unitarity in the PH Model

- Requiring perturbative unitarity provides important constraints (e.g., in the SM, limits on m_h and/or scattering energy... see Lee, Quigg and Thacker '77)
- In models with extended scalar sectors, $hh \rightarrow hh$ probes self-interactions
- Analysis performed in terms of "partial waves", e.g. the J=0 partial wave:

$$a_0 = \frac{1}{16\pi s\beta^2} \int_{-s\beta^2}^0 \mathcal{A}(h^0 h^0 \to h^0 h^0) dt$$

In the PH model:

Bounds on SM-like Higgs Mass

• To extract maximum Higgs mass consistent with PU, take s $\gg m^2$ limit:

$$\lim_{s\to\infty} a_0 = -\frac{1}{32\pi} g_{h^0 h^0 h^0 h^0} \, .$$

0.5 SM Limit ($\beta \rightarrow 0$): SM $\beta = 0.1$ 0.4 $\beta = 0.2$ $m_h \lesssim I \text{ TeV}$ $\beta = 0.3$ $\beta = 0.4$ PH = softens bounds 0.3 a Similar results for 0.2 $W_L W_L$, $Z_L Z_L$, etc. $v_s = 500 \text{ GeV}$ 0.1 $m_{\kappa^0} = 130 \text{ GeV}$ Results nearly independent of m_K 0 800 400 600 1000 1200 1400 200 [GeV] m_ho

Private Higgs Dark Matter (PHDM)

- PH provides a good candidate for a WIMP
- <u>Scalar DM</u>:

"Gauge Singlet Scalar DM" (Zee et al., Davoudiasl et al., etc.) and "Inert Doublet Model" (Barbieri et al., etc.)

• Any form of DM is constrained by WMAP measurements:

 $\Omega_{DM} h^2 = 0.111 \pm 0.018$

- Birkedal et al. (PRD70, 077701 (2004)): Limits on DM abundance translate into limits on annihilation cross section.
- For scalar "s-annihilator":

 σ_{an} = 0.85 ± 0.15 pb

Constraining PHDM

- Focus on small values of mixing between top PH and S (to avoid copious decays into SM particles)
- Then, K^0 kept in equilibrium with cosmic fluid via:

- <u>Note</u>: K^0 s-channel exchange suppressed by β^2 , while *t*-channel diagrams are suppressed by β^4 .
- Consider two scenarios:
 - "Light K^{0} " scenario: $m_K < m_W$ such that annihilation into b's dominate
 - "<u>Heavy K^0 </u>" scenario: $m_W < m_K < 2m_W$ s.t. annihiation into WW, ZZ pairs dominates

"Light K⁰" Scenario:

- One "representative" point in parameter space... not a "full scan"
- Require $v_b \sim m_b$
- WMAP requires smaller mixing and masses ~ 50 75 GeV range

- In general, easier to incorporate larger mass range
- Much smaller mixing angles
- Larger values of S's vev

Indirect Detection of DM

- Annihilation c.s. for DM ~ velocity-independent in non-relativistic regime
- DM collected in the galactic halo \rightarrow anomalous cosmic rays

$$\gamma$$
 rays \rightarrow information on DM

- Experiments:
 - Ground-based (atmospheric cerenkov telescopes):VERITAS, HESS, etc.
 - Space-based: GLAST
- Typical reach for DM searches:
 - ACT's ~ 10⁻¹¹ 10⁻¹² cm⁻² s⁻¹
 - GLAST ~ 10⁻¹⁰ cm⁻² s⁻¹

• The flux of photons observed with a line of sight $\Psi(\theta, \varphi)$ and f.o.v. $\Delta \Omega$:

$$\Phi = (1.1 \times 10^{-9} \,\mathrm{s}^{-1} \mathrm{cm}^{-2}) \left(\frac{\sigma_{\gamma\gamma} u}{1 \,\,\mathrm{pb}}\right) \left(\frac{100 \,\,\mathrm{GeV}}{m_{K^0}}\right) \bar{J}(\Psi, \Delta\Omega) \Delta\Omega \,,$$

- Dependence of flux on DM density distribution is contained in J
 - Value of J very model-dependent
 - Many models predict large spike in neighborhood of galactic center
 - $J \approx 10^3 10^7$ for $\Delta \Omega = 10^{-3}$ sr (typical for ACTs)

[s⁻¹ cm⁻²]

"Light K⁰" Scenario:

- Assume no significant clumping (i.e., $J(\Psi, \Delta \Omega) \Delta \Omega = I$)
- Beyond the reach of GLAST $(reach = 10^{-10} cm^{-2} s^{-1})$
- With considerable clumping (e.g., $J(\Psi, \Delta \Omega) \Delta \Omega = 10^2$), observation at ACTs possible

Conclusions

- Private Higgs model provides a simple way to account for large hierarchy observed in the fermion mass spectrum
- <u>Idea</u>: Introduce one Higgs doublet per fermion + discrete symmetries
- Induce EWSB via vev of a gauge singlet scalar S
- PH-enomenology consists of a handful of scalars below ~ TeV and a possible DM candidate
- Perturbative Unitarity: PH sector softens bounds on SM-like Higgs mass
- <u>Private Higgs Dark Matter (PHDM)</u>:
 - Easily account for relic abundance of DM with "natural" values of parameters
 - If PHDM clumps in the region of the galactic core, observation with gamma ray telescopes is possible