Collider Test of Type III Seesaw Model

Guiyu Huang

University of Wisconsin - Madison

Pheno 2008

work in progress with

A.Arhrib, B.Bajc, D.K.Ghosh, T.Han, I.Puljak, G.Senjanović

For similar study of Type II model see

arXiv:0803.3450 and talk by Tong Li.

= > nan

< 17 >

Outline

- Seesaw Mechanism (1
- 2 Productions
- Decays 3
- Background 4
- 5 Parametrization

< 17 >

Neutrino oscillation experiments show non-zero neutrino mass differences Δm^2_{sol} and Δm^2_{atm} , thus implying at least two massive neutrinos.

Seesaw Mechanism

Neutrino mass generated by

$$\mathcal{L}_{eff} = y_{eff} rac{LLHH}{M}$$

where $M \gg M_W$.

In general, the small neutrino masses can be explained by large M, or small Yukawa, or both.

Seesaw Classification

Depending on the nature of the heavy degrees of freedom, seesaw models can be classified as

- I. SM femionic singlets,
- II. SU(2) bosonic triplet (Y=2),
- III. SU(2) fermionic triplet (Y=0),
- and... combination of I and III. (Natural from 24_F of SU(5) GUT)

= > 000

Type III Seesaw

SU_L(2) lepton triplet $T = (T^+, T^0, T^-)$ (1,3,0), and lepton singlet *S*. The Majorana mass and the Yukawa interactions are

$$- M_T(T^+T^- + T^0T^0/2) - M_S(SS/2) + y_T^i H^T i\sigma_2 TL_i + y_S^i H^T i\sigma_2 SL_i + h.c.$$

These lead to the Majorana mass for the light neutrinos

$$M_{ij} pprox rac{v^2}{2} \left(rac{y_T^i y_T^j}{m_T} + rac{y_S^i y_S^j}{m_S}
ight),$$

From flavor to mass eigenstates, mixings occur such as

$$T^0
ightarrow T^0 - \epsilon^i_T
u_i, \qquad \epsilon^i_X \equiv rac{y'_X v}{\sqrt{2}m_X}$$

Heavy scalar. TeV scale triplet.

GuiyuHuang (Wisconsin)

Production Channels

Lepton pair production in hadronic collisions is dominantly via the Drell-Yan mechanism,

$$egin{aligned} qar{q}' & o W^{*\pm} & o T^{\pm}T^0, \quad qar{q}' & o W^{*\pm} & o T^0\ell^{\pm}, \ qar{q} & o \gamma^*, Z & o T^+T^-, \quad qar{q} & o Z^* & o T^{\pm}\ell^{\mp}. \ &\lambda^2 &= \left\{ egin{aligned} 1 & ext{for } TT \ \sum_i |y_i|^2 & ext{for } T\ell. \end{aligned}
ight. \end{aligned}$$

< 47 ▶

Cross sections at LHC

Figure: Total cross section for Z' production versus its mass, (a) with the coupling constant squared (λ^2) factored out (for states in the KK eigenbasis), and (b) with the absolute normalization for the couplings (for states in the mass eigenbasis).

Total Widths

Width and Decay Length

Figure: The total width of T as a function of its mass.

Branchings

Lepton Triplet Branching Fraction

Figure: The branching ratios of T into the various modes as a function of its mass.

< A

Decay Modes of a TT Pair

The possible combinations of decay channels of pair-produced T's.

	$T^- \rightarrow \nu W^-$	$T^- ightarrow \ell^- Z$	$T^- \rightarrow \ell^- h$
$T^0 ightarrow u h$	$ u \nu W^- h$	νℓ [−] Zh	$ u\ell^-hh$
$T^0 ightarrow u Z$	$\nu\nu W^-Z$	$ u \ell^- ZZ$	$ u\ell^- Zh$
$T^0 ightarrow \ell^- W^+$	$ u\ell^-W^-W^+$	$\ell^-\ell^-W^+Z$	$\ell^-\ell^-W^+h$
$T^0 ightarrow \ell^+ W^-$	$ u\ell^+W^-W^-$	$\ell^+\ell^-W^-Z$	$\ell^+\ell^-W^-h$
$T^+ ightarrow u W^+$	$ u \nu W^- W^+ $	$ u\ell^-W^+Z$	$ u\ell^-W^+h$
$T^+ ightarrow \ell^+ Z$	$\nu\ell^+W^-Z$	$\ell^+\ell^-ZZ$	$\ell^+\ell^-$ Zh
$T^+ ightarrow \ell^+ h$	$ u\ell^+W^-h$	$\ell^+\ell^- Zh$	$\ell^+\ell^-hh$

Table: Triplet pair decay channels.

Dominant background is expected from $t\bar{t}W$ events.

$$t\bar{t}W^{\pm} \rightarrow bW^{+}\bar{b}W^{-}W^{\pm} \rightarrow \ell^{\pm}\ell^{\pm}b\bar{b}jj\nu\nu$$

Other backgrounds include *WWWW* and *WWWZ* and generic *WWWjj*. *WWZZ* events do not yield same-sign leptons. Jets faking leptons should also be considered.

= > 000

Parametrizing the Type III Yukawas

In normal hierarchy (NH) i.e. $m_1^{\nu} = 0$,

$$\frac{v y_T^{\prime *}}{\sqrt{2}} = i \sqrt{m_T} \left(U_{i2} \sqrt{m_2^{\nu}} \cos z \pm U_{i3} \sqrt{m_3^{\nu}} \sin z \right) \frac{v y_S^{i *}}{\sqrt{2}} = -i \sqrt{m_S} \left(U_{i2} \sqrt{m_2^{\nu}} \sin z \mp U_{i3} \sqrt{m_3^{\nu}} \cos z \right)$$

In inverted hierarchy (IH) i.e. $m_3^{\nu} = 0$,

$$\frac{v y_T^{**}}{\sqrt{2}} = i \sqrt{m_T} \left(U_{i1} \sqrt{m_1^{\nu}} \cos z \pm U_{i2} \sqrt{m_2^{\nu}} \sin z \right) \frac{v y_S^{i*}}{\sqrt{2}} = -i \sqrt{m_S} \left(U_{i1} \sqrt{m_1^{\nu}} \sin z \mp U_{i2} \sqrt{m_2^{\nu}} \cos z \right)$$

where z is a complex number.

GuiyuHuang (Wisconsin)

= > nan

PMNS matrix

The PMNS neutrino mixing matrix

$$U = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -c_{12}s_{13}s_{23}e^{i\delta} - c_{23}s_{12} & c_{12}c_{23} - e^{i\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta}c_{12}c_{23}s_{13} & -c_{23}s_{12}s_{13}e^{i\delta} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix} \\ \times \operatorname{diag}(e^{i\Phi_{1}/2}, 1, e^{i\Phi_{2}/2})$$

= > nan

< 🗇 >

Neutrino Data Fitting

Parameter	Best fit	2 σ	3σ
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.6	7.3–8.1	7.1–8.3
$ \Delta m_{31}^2 $ [10 ⁻³ eV ²]	2.4	2.1–2.7	2.0–2.8
$\sin^2 \theta_{12}$	0.32	0.28–0.37	0.26-0.40
$\sin^2 \theta_{23}$	0.50	0.38–0.63	0.34–0.67
$\sin^2 \theta_{13}$	0.007	\leq 0.033	\leq 0.050

Table: Best-fit values, 2σ and 3σ intervals (1 d.o.f.) for the three–flavour neutrino oscillation parameters from global data including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS) experiments.

 $= \mathbf{N} \mathbf{Q} \mathbf{Q}$

Parametrically, y_X^i grows exponentially with Im(z). Not bound from above.

Constrained by low energy rare processes such as $\mu \rightarrow e\gamma$.

$$|y| \le 10^{-5}$$
, i.e. $|\text{Im}(z)| \le 5-6$

The dimensionless parameter a_X is defined as,

$$a_X^i \equiv \left| y_X^i \right| \sqrt{rac{v}{2m_X}}$$

GuiyuHuang (Wisconsin)

Type III Seesaw at LHC

GuiyuHuang (Wisconsin)

Normalized Branching

The normalized branching is defined as

$$\frac{\text{BR}(\text{Ve}_i)}{\text{BR}(\text{Ve})} \equiv \frac{\text{BR}(\text{Ve}_i)}{\Sigma_i \text{BR}(\text{Ve}_i)}$$

BR(Ve) varies with the mass of the triplet. For sufficiently large m_T , BR(Ve) = 1/2, 1/4, 1/4 for V = W, Z, h.

19/30

GuiyuHuang (Wisconsin)

Type III Seesaw at LHC

GuiyuHuang (Wisconsin)

Type III Seesaw at LHC

In most parameter space of NH, the normalized branchings for $V\mu$ and $V\tau$ are between 0.1 to 0.9. They sum up to more than 0.85 and the normalized *Ve* branching is less than 0.15 in most regions . So,

 $BR(V\mu, V\tau) \gg BR(Ve),$

Therefore for pair produced *TT*, we can establish a hierachical order among the branchings of their decay combinations:

$$\mu\mu, \mu\tau, \tau\tau \gg e\mu, e\tau \gg ee.$$
 (1)

For the IH it is more complicated. A quasi-seperation can also be established for IH if Majorana phases are fixed.

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) \geq 2, $s_{13}^2 \leq$ 0.033 and $\Phi_{1,2} \in [0, 2\pi]$. The NH (IH) has no dependence on $\Phi_1(\Phi_2)$.

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) ≤ -2 , $s_{13}^2 \leq 0.033$ and $\Phi_{1,2} \in [0, 2\pi]$. The NH (IH) has no dependence on $\Phi_1(\Phi_2)$.

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) \geq 2 and $\Phi_{1,2} \in [0, 4\pi]$.

As $\Phi_{1,2}$ only appear as $\Phi_{1,2}/2$, the appropriate periodicity range is therefore $\Phi_{1,2} \in [0, 4\pi]$.

On the other hand, we notice that $y_T^i \leftrightarrow \pm y_T^i$ (plus sign for NH and minus for IH) under the symmetry transformation

$$(\Phi_i \leftrightarrow \Phi_i + 2\pi, z \leftrightarrow -z)$$
. Thus $|y_T^i|$ and BR(*Ve_i*) are invariant

GuiyuHuang (Wisconsin)

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) = 1, and $\Phi_{1,2} \in [0, 2\pi]$. The NH (IH) has no dependence on $\Phi_1(\Phi_2)$.

= > nan

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) = 1, and $\Phi_{1,2} \in [0, 2\pi]$. The NH (IH) has no dependence on $\Phi_1(\Phi_2)$.

Figure: Normalized branching vs Majorana phases for NH (left) and IH (right). Im(z) = 0, and $\Phi_{1,2} \in [0, 2\pi]$. The NH (IH) has no dependence on $\Phi_1(\Phi_2)$.

Figure: Normalized branching vs |Re(z)| for NH (left) and IH (right). Im(z) = 0, and $\Phi_{1,2} \in [0, 2\pi]$.

E ► 290

< 日

Seesaw Mechanism Productions Decays Background Parametrization Scanning

GuiyuHuang (Wisconsin)