

Testing Origin of Neutrino Mass at the LHC

Tong Li

Phenomenology Institute, Department of Physics

University of Wisconsin-Madison/Nankai University

Pheno 2008 Apr 28, 2008

Pavel Fileviez Pére, Tao Han, Guiyu Huang, TL and Kai Wang

arXiv:0803.3450 [hep-ph]

(□) (@) (E) (E) E

Neutrino Mass: 1st Evidence Beyond SM

Global Fit at 2σ level schwetz 07

 $\begin{array}{rl} 7.3 \times 10^{-5} \mathrm{eV}^2 &< \Delta m_{21}^2 < 8.1 \times 10^{-5} \mathrm{eV}^2; \\ 2.1 \times 10^{-3} \mathrm{eV}^2 &< |\Delta m_{31}^2| < 2.7 \times 10^{-3} \mathrm{eV}^2 \\ 0.28 &< \sin^2 \theta_{12} < 0.37; \ \textbf{0.38} &< \sin^2 \theta_{23} < 0.63; \ \sin^2 \theta_{13} < 0.033 \\ \sum_i m_i < 1.2 \ \mathrm{eV} \end{array}$

Theoretical Models

• Type I seesaw $y_D \ell \nu^c H_u + M_R \nu^c \nu^c$, $\Delta L = 2$ $M_R \sim 10^{14-15} \text{GeV}$, $m_\nu \sim M_D^2/M_R \approx 1 \text{eV}$

Yanagida 79; Gell-Man et al. 79; Glashow 80; Mohapatra, Senjanovic 80

• Type II seesaw $y_{\nu}\ell^{T}i\sigma_{2}\Delta\ell$, $\Delta L = 2$ $M_{\Delta} \sim 10^{14-15} \text{GeV}, m_{\nu} = y_{\nu}\nu' \sim 10^{-10} \text{GeV}$

Cheng, Li 80; Mohapatra, Senjanovic 80; Shafi et al. 81

• Zee-Babu model, generates neutrino mass at two-loop $\Delta L = 2$

Type III seesaw, etc......

Type II seesaw

$Y = 2 SU(2)_L$ Triplet

$$\Delta = \left(egin{array}{cc} \delta^+/\sqrt{2} & \delta^{++} \ \delta^0 & -\delta^+/\sqrt{2} \end{array}
ight)$$

Breaking $U(1)_L$ and $U(1)_{\mathrm{B-L}}$

$$\begin{split} L &= -y_{\nu} \ell_{L}^{T} C i \sigma_{2} \Delta \ell + \mu H^{T} i \sigma_{2} \Delta^{\dagger} H + h.c. + \\ v_{\Delta} &= \frac{\mu v_{0}^{2}}{\sqrt{2} M_{\Delta}^{2}}, M_{\nu} \sim \sqrt{2} v_{\Delta} y_{\nu} \end{split}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → の < ⊙

Bounds on Triplet Higgs

Masses

- LNV Direct Test $0\nu\beta\beta$: $\frac{y_{\nu}v_{\Delta}}{M_{\Delta}^{2}} \leq 5 \times 10^{-8} \text{ GeV}^{-1}, M_{\Delta} > 0.1 \text{ GeV}$
- CDF/DØ Search bound: $m_{H^{++}} > 120 \text{ GeV}$

VEV

• ρ -parameter Gunion, et. al 90;Chen, Dawson 02

$$ho = (m_W/(m_Z\cos heta_W))^2; \quad v_\Delta \lesssim 1 \; {
m GeV}$$

• Lepton Flavor Violation ${
m Br}(\mu
ightarrow e^- e^+ e^+) < 10^{-12}$

$$v_\Delta^2 > 0.2 imes 10^5 |M_
u^{11} M_
u^{12}| imes \left(rac{1 \ {
m TeV}}{M_\Delta}
ight)^2, v_\Delta \gtrsim 10 \ {
m eV}$$

H^{++} Decay BR: y_{ν} vs v_{Δ}

 $M_{\nu} \sim \sqrt{2} v_{\Delta} y_{\nu}, \quad \frac{\Gamma(\ell \ell)}{\Gamma(WW)} \approx \left(\frac{M_{\nu}}{M_{\Delta}}\right)^2 \left(\frac{v_0}{v_{\Delta}}\right)^4$

Distinguish Neutrino Spectrum in Triplet LNV Decay

Taking into account the experimental constraints on the neutrino masses and mixing but no Majorana phases Normal Hierarchy(NH): $\Delta m_{31}^2 > 0$ Inverted Hierarchy(IH): $\Delta m_{31}^2 < 0$

FIG. 12: Br $(H^{++} \rightarrow e_i^+ e_i^+)$ vs. the lowest neutrino mass for NH (left) and IH (right) when $\Phi_1 = 0$ and $\Phi_2 = 0$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Doubly Charged (continued)

- ヘックク ヨー・ イヨ ト イヨ ト ・ 日 - シックク

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Impact of Majorana Phases (continued)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Singly Charged

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへの

Leading Leptonic Channels

Channels	Modes and BR's	Modes and BR's		
	Normal Hierarchy	Inverted Hierarchy		
$H^{++}H^{}$				
$\Phi_1, \Phi_2 = 0$	$\mu^+\mu^+\mu^-\mu^-$ (40%) ²	$e^+e^+e^-e^-$ (50%) ²		
	$\mu^+\mu^+\mu^- au^-$ 40% $ imes$ 35%	$e^+e^+\mu^- au^-$ 50% $ imes$ 25%		
	$\mu^+\mu^+ au^- au^-$ (40%) ²	$\mu^+ au^+\mu^- au^-$ (25%) ²		
	$\mu^+ au^+ \mu^- au^-$ (35%) ²			
	$\mu^{+} \tau^{+} \tau^{-} \tau^{-}$ 35% × 40%			
$\Phi_1pprox\pi$	same as above	$ee, \mu au ightarrow e\mu, e au$ (50%) 2		
$\Phi_2 pprox \pi$	$\mu\mu, \tau\tau: \times 1/2, \ \mu\tau: \times 2$	same as above		
$H^{\pm\pm}H^{\mp}$				
$\Phi_1, \Phi_2 = 0$	$\mu^+\mu^+\mu^- u$ 40% $ imes$ 60%	$e^+e^+e^- u~(50\%)^2$		
	$\mu^+\mu^+ au^- u$ 40% $ imes$ 60%			
$\Phi_1pprox\pi$	same as above	$ee ightarrow e\mu, e au$ 60% $ imes$ 50%		
$\Phi_2 pprox \pi$	$\mu\mu: imes1/2$	same as above		

LHC Phenomenology

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の��

Production of Triplet Higgses

Tree Level Cross-section of Triplet Higgses Production

$$egin{array}{rcl} q+ar{q}&
ightarrow H^{++}+H^{--}\ q+ar{q}'&
ightarrow H^{\pm\pm}+H^{\mp}\ q+ar{q}'&
ightarrow H^{\pm}+H_2 \end{array}$$

Small vev limit $v_{\Delta} \lesssim 10^{-4} \text{ GeV}$

$$pp
ightarrow H^{\pm\pm}H^{\mp}
ightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp}
u, \ell^{\pm}\ell^{\pm}\tau^{\mp}
u$$
 $(\ell = e, \mu)$

$$pp
ightarrow H^{++}H^{--}
ightarrow \ell^+ \ell^+ \ell^- \ell^-, \ell^+ \ell^+ \ell^- \tau^-, \ell^+ \ell^+ \tau^- \tau^-, \ell^+ \tau^+ \tau^- \tau^-, \ell^+ \tau^+ \tau^- \tau^- (\ell = e, \mu)$$

- μ , e and τ respectively
- H₂ → invisible and always produced via H[±]H₂, another missing ν from H[±], impossible to reconstruct.

Basic Cuts

- $p_T(\ell_{
 m max})>$ 30 GeV and $p_T(\ell_{
 m min})>$ 15 GeV
- $|\eta(\ell)| < 2.5$
- $\Delta R_{\ell\ell} > 0.4$

SM Background

• if there exists same flavor, opposite sign dilepton

$$ZZ/\gamma^* \to \ell^+ \ell^- \ell^+ \ell^-$$

• Veto events of $|M_{\ell^+\ell^-} - M_Z| > 15 \text{ GeV}$ After reconstruction, purely event counting

 $\ell^{\pm} \ell^{\pm} \ell^{\mp} \nu \, \left(\ell = e, \mu \right)$

Basic Cuts

- $p_T(\ell_{
 m max})>$ 30 GeV and $p_T(\ell_{
 m min})>$ 15 GeV
- $|\eta(\ell)| < 2.5$
- $\Delta R_{\ell\ell} > 0.4$
- $\not\!\!{E_T} > 40 \text{ GeV}$

SM Background

if there exists same flavor, opposite sign dilepton

$$W^{\pm}Z/\gamma^* \to \ell^{\pm}\nu\ell^+\ell^- \sim 100 \text{ fb}, W^{\pm}W^{\pm}W^{\mp} \to \ell^{\pm}\ell^+\ell^- + \not\!\!\! E_T \sim 1 \text{ fb}$$

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

$\ell^{\pm}\ell^{\pm}\ell^{\mp}\nu$ (continued)

Cuts and Mass reconstruction

- Veto events of $|M_{\ell^+\ell^-}-M_Z|>15~{
 m GeV}$
- $M_T = \sqrt{(E_T^\ell + \mathcal{F}_T)^2 (\vec{p}_T^\ell + \vec{p}_T)^2} > 200 \text{ GeV}$

τ Final State

Atlas TDR

(日) (四) (三) (三)

э

τ Leptonic decay: $H^{\pm} \rightarrow \tau^{\pm} \nu \rightarrow \ell^{\pm} + \mathcal{E}_{T}$

- ℓ from H^+ Jaccobian Peak around $M_H/2$
- ℓ from au, purely boost effect, much softer

p_T^ℓ selection (GeV)	50	75	100	100	150	200		
ℓ misidentification rate	2.9%	9.4%	17.6%	4.6%	12.4%	22.2%		
au survival probability	57.0%	69.8%	78.8%	62.8%	75.7%	83.7%		
au selection:								
$p_T < 100 { m GeV}$ for $M_{H^+} = 300 { m GeV}$								
$p_T < 200~{ m GeV}$ for $M_{H^+} = 600~{ m GeV}$								

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\ell^+\ell^+\ell^-\tau^-, \ell^+\ell^+\tau^-\tau^-, \ell^+\tau^+\ell^-\tau^-, \ell^+\tau^+\tau^-\tau^-$$

Highly Boosted au

- each τ corresponds to one unknown: $\vec{p}^{\text{invisible}} = \kappa \vec{p}^{\ell}$
- 2 indepent equations: $\Sigma \vec{p}_T^{\text{invisible}} = \vec{p}_T$

• 1 more equation:
$$M_{\ell^+ au^+}=M_{ au^- au^-}$$

UPTO THREE τ s

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reconstruction Example: $\mu\mu\tau\tau$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の��

Measuring BR

$$\begin{split} N_{4\mu} &= \mathcal{L} \times \sigma(pp \to H^{++}H^{--}) \times \mathrm{BR}^2(H^{++} \to \mu^+\mu^+) \\ N_{3\mu\tau} &= \mathcal{L} \times \sigma(pp \to H^{++}H^{--}) \times \mathrm{BR}(H^{++} \to \mu^+\mu^+) \mathrm{BR}(H^{++} \to \mu^+\tau^+) \end{split}$$

Gauge Bosonic Channels

Large vev limit $10^{-4} \text{ GeV} \ll v_{\Delta} \lesssim 1 \text{ GeV}$

- To test doublet-triplet mixing $\mu H^T \Delta H$
- Both H^+ and H_2 decay will tell this, but $H_2 \rightarrow H_1 H_1$ has at least 6 jets final state
- $H^{\pm\pm}H^{\mp} \rightarrow W^{\pm}W^{\pm} + W^{\mp}H_1/\bar{t}b(t\bar{b})/W^{\mp}Z \rightarrow 4j2\ell^{\pm}E_T$

$\sigma({\rm fb})$	Basic	p_T^t cut	p_T^j cut	$M_{ m Cluster}$	M_W rec.	M_X rec.	M_T	M_{jjjj}
cuts	Cuts	$> 50~{ m GeV}$	$> 100 { m GeV}$	$> 600~{ m GeV}$	$M_W \pm 15~{ m GeV}$	or M_t veto	$< 300~{ m GeV}$	$300\pm50~{ m GeV}$
$t\bar{b}$	0.13	0.12	0.12	0.11	0.11	0.094^{*}	0.094	0.092
WH	0.074	0.069	0.065	0.061	0.06	0.046	0.045	0.045
WZ	0.06	0.056	0.053	0.05	0.05	0.038	0.038	0.038
$H^{\pm\pm}H^{\mp}$ sum	0.26	0.25	0.24	0.22	0.22	0.18	0.18	0.17
$H^{\pm\pm}H^{\mp\mp}$	0.24	0.23	0.22	0.21	0.21	0.18	0.17	0.17
$t\bar{t}W$	3.1	2.5	1.8	1.4	1.4	0.88^{*}	0.52	0.095
					$(M_H \text{ rec.} \rightarrow)$	0.15	0.097	0.045
					$(M_Z \text{ rec.} \rightarrow)$	0.11	0.071	0.032
					$(M_W \text{ rec.} \rightarrow)$	0.096	0.06	0.026

$\sigma(\mathrm{fb})$	Basic	p_T^ℓ cut	p_T^j cut	M_{J_1} rec.	M_{J_2} rec.	M_{JJ}
cuts	Cuts	$> 80 { m GeV}$	$> 200 { m GeV}$	$M_W \pm 15~{\rm GeV}$	$M_X \pm 15~{ m GeV}$	$600 \pm 75 \mathrm{GeV}$
WH	1.1×10^{-2}	9.5×10^{-8}	$9.5 imes 10^{-8}$	9.4×10^{-3}	$9.1 imes 10^{-3}$	$9.0 imes 10^{-3}$
WZ	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-2}	9.9×10^{-8}	9.8×10^{-3}
$H^{\pm\pm}H^{\mp\mp}$	$3.3 imes 10^{-2}$	3.2×10^{-2}	3.1×10^{-2}	3.1×10^{-2}	3.1×10^{-2}	3.1×10^{-2}
$JJW^{\pm}W^{\pm}$	14.95	7. 65	4.69	$\begin{array}{c} 0.24 \\ (M_{H} \ \mathrm{rec.} \rightarrow) \\ (M_{Z} \ \mathrm{rec.} \rightarrow) \\ (M_{W} \ \mathrm{rec.} \rightarrow) \end{array}$	6×10^{-2} 0.13 0.1	4.0×10^{-5} 1.4×10^{-4} 1.6×10^{-4}

Extract μ parameter

$$\begin{split} & \Gamma(H^+ \to W^+ H_1) \sim \frac{\mu^2}{M_{H^+}}, \quad \Gamma(H^+ \to t \bar{b}) \sim \frac{\mu^2 m_t^2}{M_{H^+}^3}, \\ & \Gamma(H^+ \to W^+ Z) \sim \left(g_1^2 \, \frac{\mu v_0^2}{M_\Delta^2} - \sqrt{2}(2g_1^2 \, + \, g_2^2) \, v_\Delta\right)^2 \, \frac{M_{H^+}^3}{v_0^4} \end{split}$$

Conclusion

- We propose one scenario that Type II seesaw mechanism can be tested directly at the LHC although it may require high luminosity.
- It has very different phenomenology like doubly charged scalars that can decay into same sign dilepton.
- If the doubly charged Higgs and its LNV decay has been discovered, we will be able to extract information of neutrino mass and mixing from BR of triplet Higgses.

THANK YOU!