Status of SM Higgs Feasibility Studies at ATLAS Bruce Mellado

University of Wisconsin-Madison

Pheno 2008, Madison 04/28/07

Outline

Introduction

Most relevant observation channels

- ≻Н→үү
- ≻Η→ττ
- $H \rightarrow ZZ^{(*)} \rightarrow 4I$
- ≻H→WW(*)→IIvv

Summary

Focus on what we can do with 10 fb⁻¹ of data

ATLAS will soon release new studies of all relevant channels, including new reconstruction software, MC, analysis techniques

Main Decay Modes

	Higgs mass (GeV)	80	90	100	110	120	130	140	150
	Cross-section (pb)	38.4	32.4	27.8	24.2	21.2	18.8	17.0	15.4
	Branching ratio (%)	0.089	0.119	0.153	0.190	0.219	0.222	0.193	0.138
	$\sigma \times BR \ (fb)$	34.2	38.6	42.5	46.0	46.4	41.8	32.8	21.2
	Acceptance	0.29	0.38	0.44	0.48	0.51	0.53	0.55	0.58
	Mass resolution (GeV)	1.11	1.20	1.31	1.37	1.43	1.55	1.66	1.74

↓Signal to background for inclusive H→γγ is 3-4% need excellent Higgs mass resolution of about 1%

ATLAS TDR

Constant term in EM resolution needs to be understood to c_{tot}<0.7%</p>

>Use cosmics, minimum-bias for first crude look at cell inter-calibration

➢Use Z→ee for absolute EM scale and refined cell inter-calibration

```
*Need O(10^5) events or <1 fb<sup>-1</sup>
```

>Use Z \rightarrow ee γ , $\mu\mu\gamma$ to study detector response to photons

Higgs Mass Reconstruction

Expect about 50% of events to have at least one converted photon, but can achieve <1.2% mass resolution</p>

Inclusive $H \rightarrow \gamma \gamma$

Low Mass SM $H \rightarrow \tau \tau$

Reconstruct Higgs mass with collinear approxim

Bruce Mellado, PHENO2008, 04/28/06

 $\nu\nu$ -::

 $\nu\nu$

Main Detector Requirements

 $\blacksquare Missing E_{T} reconstruction is a challenge (even with MC!)$

Missing E $_{T}$ is crucial to reconstruct Higgs mass

- > Require mass resolution of <10%</p>
- > Hadronic calibration with data: combination of
 - A Minimum bias (low P_T depositions)
 - *di-jets, Z \rightarrow ll+jets (γ -jet) events, W $\rightarrow \tau \nu$ for high P_T depositions.

Enough data with 1 fb⁻¹ to cover necessary phase space to calibrate detector for Higgs discovery

In order to suppress fake leptons (QCD background) to a level <10% of the irreducible background we need to achieve combined 10⁷ rejection with lepton ID

> May be achieved for $H \rightarrow \tau \tau \rightarrow II$ (I=e,µ)

*May achieve >10⁴ per lepton

> Checking TDR QCD rejection estimates for $H \rightarrow \tau \tau \rightarrow lh$

SM Higgs $H \rightarrow WW^{(*)} \rightarrow 2I2_V$

Strong potential due to large signal yield, but no narrow resonance. Left basically with event counting experiment

Background Suppression and Extraction

Not able to use side-bands to subtract background. This makes signal extraction more challenging. Need to rely on data rather than on theoretical predictions

Definition & understanding of control samples is crucial

ttbar suppression

- \blacksquare Jet veto (understand low P_T jets)
- Semi-inclusive b-tagging or "top killing" algorithm
- <u> </u>Çombined rejection of >10 times

Summary and Outlook

Early discovery of low mass Higgs is challenging. Combination of multiple independent channels adds sensitivity and robustness to search

>One fb⁻¹ of usable data (or less) will be needed for calibration and understanding of backgrounds

>Will need ~10 fb⁻¹ to achieve 5σ for mass range

Data-driven methods for the extraction of background are well defined for Higgs searches

ATLAS will soon report on re-analysis of sensitivity to observation of SM Higgs.

Using new reconstruction software, calibration and background extraction techniques, analysis techniques, Monte Carlos and QCD corrections on signal and backgrounds