Searching for $t\bar{t}$ Resonances at the LHC

UB, L. H. Orr PRD 76 094012 (2007), arXiv:0803.1160

- 1. Introduction
- 2. Why Standard Cuts won't cut it
- 3. Background analysis
- 4. KK gluons: Discovery limits
- 5. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Introduction

- Many models of new physics predict new particles with mass in the TeV range which decay into a $t\bar{t}$ pair:
 - topcolor and Little Higgs models predict weakly coupled new vector bosons
 - ED models can have Kaluza-Klein (KK) excitations of the graviton, the weak and strong gauge bosons
 - axial vector bosons appear in torsion gravity models
 - \checkmark resonances in the $t\bar{t}$ channel also appear in technicolor, chiral color, and models with a strong $SU(3) \times SU(3)$ gauge symmetry

• In some models, the couplings of the new particles to light quarks and gluons are suppressed, and the $t\bar{t}$ final state becomes their main discovery channel

Example: bulk Randall-Sundrum models

• Searching for resonances in the $t\bar{t}$ channel at the LHC appears to be easy:

Select lepton+jets final state $t\bar{t} \to W^+W^-b\bar{b} \to \ell\nu q\bar{q}'b\bar{b}$ $(\ell = e, \mu)$

- Impose standard selection criteria:
 - \rightarrow electron or muon
 - \rightarrow missing E_T
 - \rightarrow two *b*-tagged jets
 - \rightarrow two or more jets which are not tagged
 - \rightarrow standard p_T , rapidity and separation cuts

 $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! >$ Solve for longitudinal momentum of the ν assuming lepton and neutrino originate from $W \to \ell \nu$

 $reconstruct t\bar{t}$ invariant mass, $m(t\bar{t})$

• This works well for low invariant masses, but not in the TeV region

- Problems at high p_T and/or $t\bar{t}$ invariant masses:
 - \Leftrightarrow top quark decay products are highly boosted \rightarrow almost collinear
 - lepton frequently not isolated
 - \Leftrightarrow jets from $t \rightarrow bjj$ often overlap or merge
 - ☞ frequently there are less than 4 observable jets in the final state
 - the *b*-tagging efficiency may be significantly smaller, and the light jet misidentification probabilities considerably larger than at low energies:

ATLAS study: for $m(t\bar{t}) = 3$ TeV: $\epsilon_b = 0.2$, $P_{j \to b} \approx 1/30$

• consider final states with 2, 3 or 4 jets and one or two *b*-tags

3 – Background Analysis

- Main backgrounds contributing to $\ell \nu + n$ jet final state with n = 2, 3, 4:
 - $rightarrow Wb\overline{b} + m$ jet production (m = 0, 1, 2)

$$rightarrow (Wb + W\overline{b})j + m$$
 jets

$$rightarrow Wjj + m$$
 jets

$$(t\bar{b} + \bar{t}b) + m$$
 jets and $(t + \bar{t})j + m$ jets with $t \to b\ell\nu$

 \Leftrightarrow Wbt, Wt and Wjt production with $t \rightarrow bjj$

• The $Wb\bar{b} + m$ jets and Wjj + m jets background are calculated with ALPGEN; all others with MADEVENT

• Reduce background by imposing a cluster transverse mass cut

 $|m_T(b_{min}\ell) - m_t| < 20 \text{ GeV}$

where

 $p_T(b_{min}\ell) \ (m(b_{min}\ell))$: tr. momentum (invariant mass) of $b_{min}\ell$ system

 b_{min} : b- or \overline{b} -quark with the smaller separation from the charged lepton

• Further reduce background by imposing

 $|m(t \to jet(s)) - m_t| < 20 \text{ GeV}$

on jets from hadronic top decay

4 – KK gluons: Discovery Limits

- Models considered here:
 - basic RS model with the SM in the bulk (Lillie et al.)
 - The models with a large brane kinetic term κr_{IR} (Davoudiasl et al., Carena et al.)
 - *I* a model with $SO(5) × U(1)_X$ bulk gauge symmetry and N = 0 or N = 1 additional KK custodial partner quarks which are light enough that *G* can decay into them
- the KK gluons of these models couple uniformly to left-handed and right-handed light quarks q = u, d, s, c
- they do not couple vector-like to the quarks of the third generation

- include full spin correlations and interference with SM $t\bar{t}$ amplitude in calculation of KK gluon cross section
- couplings:

Model	g^q	$g_L^b = g_L^t$	g^b_R	g_R^t
Basic RS	$-0.2g_s$	g_s	$-0.2g_s$	$4g_s$
$\kappa r_{IR} = 5$	$-0.4g_{s}$	$-0.2g_{s}$	$-0.4g_{s}$	$0.6g_s$
$\kappa r_{IR} = 20$	$-0.8g_s$	$-0.6g_{s}$	$-0.8g_s$	$-0.2g_{s}$
SO(5)	$-0.2g_{s}$	$2.76g_s$	$-0.2g_{s}$	$0.07g_s$

 g_s : QCD coupling constant

In the basic RS and SO(5) model the coupling to light quarks are suppressed

- Background is significantly smaller than for $m(t\bar{t})$ distribution
- drawback of p_T distribution: information from longitudinal component is lost

Deriving Discovery Limits

- Use log-likelihood test to derive 5σ discovery limits
- Combine $m(t\bar{t})$ and $p_T(t)$ distributions to derive discovery limits
- for comparison, we also list limits for Z_H boson (with $\cot \theta = 1$) and KK graviton in basic bulk RS model (Fitzpatrick et al.)

Model	limit 100 fb $^{-1}$	limit 300 fb $^{-1}$	
Basic RS	3.8 TeV	4.3 TeV	
$\kappa r_{IR} = 5$	3.4 TeV	3.9 TeV	
$\kappa r_{IR} = 20$	3.5 TeV	4.1 TeV	
SO(5), N = 0	3.4 TeV	4.0 TeV	
SO(5), N = 1	2.4 TeV	3.0 TeV	
Z_H	2.6 TeV	2.8 TeV	
KK graviton	1.3 TeV	1.4 TeV	

Discriminating KK Gluon Models

- One can also ask how well the LHC will be able to discriminate between various KK gluon models
- Example: $M_G = 3$ TeV, assume 100 fb⁻¹
- construct "discrimination matrix" (symmetric in limit of large statistics)

Model	basic RS	$\kappa r_{IR} = 5$	$\kappa r_{IR} = 20$	SO(5), N=0	SO(5), N=1	
basic RS	0.0σ	6.1σ	10.5σ	3.1σ	7.5σ	
$\kappa r_{IR} = 5$		0.0σ	5.2σ	4.3σ	7.3σ	
$\kappa r_{IR} = 20$			0.0σ	7.8σ	9.9σ	
SO(5), N = 0				0.0σ	4.8σ	
SO(5), N = 1					0.0σ	

5 – Conclusions

- Searching for new physics in the $t\overline{t}$ final state in the TeV region poses a number of problems
- because of low *b*-tagging efficiency need to include final states with one *b*-tag → background increases
- because of merging/overlapping jets need to include final states with two and three jets
- with cluster transverse mass and invariant mass cuts backgrounds can be suppressed to a manageable level
- background for the p_T distribution is smaller than for $m(t\bar{t})$ distribution
- can discover KK gluons in $t\bar{t}$ final state with mass up to 3.5 4.3 TeV