Signals for Compressed SUSY at the LHC

Stephen P. Martin

Northern Illinois University

PHENO 2008

Madison, April 28, 2008

Compressed SUSY: the gluino mass parameter M_3 is taken much smaller than the wino mass parameter M_2 near the GUT scale.

- Ratio of heaviest to lightest superpartner masses is reduced compared to mSUGRA.
- Naturally allows the correct dark matter thermal relic abundance $0.09 < \Omega_{\rm CDM} h^2 < 0.13$ by top-squark-mediated LSP annihilation in the early universe: $\tilde{N}_1 \tilde{N}_1 \rightarrow t\bar{t}$.
- Ameliorates the SUSY little hierarchy problem (as in Kane-King hep-ph/9810374).

SPM, hep-ph/0703097, 0707.2812, 0801.0237, Baer, Box, Park, Tata 0707.0618

Typically need roughly $M_3/M_2 \sim 1/3$ at the GUT scale, and:

$$m_t < m_{\tilde{N}_1} < m_t + 100 \text{ GeV}$$

 $m_{\tilde{N}_1} + 25 \text{ GeV} < m_{\tilde{t}_1} < m_{\tilde{N}_1} + 150 \text{ GeV}$

The LSP (\tilde{N}_1) must be heavier than the top quark for natural dark matter from annihilation to tops.

The top squark (\tilde{t}_1) must be not too much heavier than the LSP.

The decay $\tilde{t}_1 \rightarrow t \tilde{N}_1$ is generally forbidden.

In the models to follow, $\tilde{t}_1 \rightarrow c \tilde{N}_1$.

To be specific, assume that at the GUT scale:

$$M_1 = m_{1/2}(1 + C_{24}),$$

$$M_2 = m_{1/2}(1 + 3C_{24}),$$

$$M_3 = m_{1/2}(1 - 2C_{24}),$$

where C_{24} parameterizes the amount of SU(5) adjoint (24) F-term SUSY breaking.

 $C_{24} = 0$ recovers the usual mSUGRA.

Instead, $0.15 \lesssim C_{24} \lesssim 0.28$ allows natural top-squark-mediated Dark Matter annihilation.

In this talk, I consider a Model Line with $C_{24} = 0.21$, $\tan \beta = 10$, $\mu > 0$, and varying M_1 , with m_0 adjusted to give the right amount of dark matter.

Mass difference $M_{\tilde{t}_1}$ - $M_{\tilde{N}_1}$ for the dark matter allowed region of the Model Line:

The $\tilde{N}_1 \tilde{N}_1 \rightarrow t\bar{t}$ "bulge" region has enhanced detection efficiency at the LHC, because the larger mass difference gives harder jets from $\tilde{t}_1 \rightarrow c\tilde{N}_1$.

LHC signal:

$$pp \to \tilde{g}\tilde{g} \to \begin{cases} t\,\bar{t}\,\tilde{t}_{1}\,\tilde{t}_{1}^{*} \to t\,\bar{t}\,c\,\bar{c} + E_{T} & (50\%) \\ t\,t\,\tilde{t}_{1}^{*}\,\tilde{t}_{1}^{*} \to t\,t\,\bar{c}\,\bar{c} + E_{T} & (25\%) \\ \bar{t}\,\bar{t}\,\tilde{t}\,\tilde{t}_{1}\,\tilde{t}_{1} \to \bar{t}\,\bar{t}\,c\,c + E_{T} & (25\%) \end{cases}$$

Due to the Majorana gluino, get the distinctive signal:

$$\ell^+\ell^+bb + \text{jets} + E_T,$$
$$\ell^-\ell^-bb + \text{jets} + E_T$$

Kraml and Raklev studied this for other models in hep-ph/0512284. Their study differed in having \tilde{t}_1 much lighter, and other squarks much heavier.

Use MadGraph/MadEvent \rightarrow Pythia \rightarrow PGS4 for event generation and detector simulation.

Cuts:

- $\bullet\,$ Exactly 2 Same-Sign isolated leptons with $p_T>20~{\rm GeV}$
- $\bullet~{\rm One}~{\rm jet}~{\rm with}~p_T>100~{\rm GeV},~~{\rm two}~{\rm more}~{\rm with}~p_T>50~{\rm GeV}$
- At least two b tags
- Two Same-Sign lepton-b pairs, each consistent with top: $m(\ell b) < 180~{\rm GeV}$
- $I\!\!\!E_T > 100~{\rm GeV}$

With these cuts, the Standard Model background is mostly $t\overline{t}$, less than 1 event/fb⁻¹. However, depends crucially on fake rates and wrong-sign assignment rates for leptons, which are difficult to anticipate before data taking.

Signal rates, after cuts, for $bb\ell^+\ell^+ E_T$ and $bb\ell^-\ell^- E_T$:

Detection prospects will depend on how well Same-Sign lepton backgrounds can be understood, from e.g. $Z \rightarrow \ell^+ \ell^+$.

Mass determinations are hard.

- No dilepton mass edges.
- Sleptons, winos, higgsinos nearly decouple from LHC.
- Difficult to disentangle

$$pp \to \tilde{g}\tilde{g} \to tt\tilde{t}_1^*\tilde{t}_1^*$$

from

$$pp \to \tilde{g}\tilde{q}_L \to \tilde{g}\tilde{g}q \to tt\tilde{t}_1^*\tilde{t}_1^*j$$

"SUSY is its own background" is especially true in Compressed SUSY.

One attempt: $H_T = \sum p_T^\ell + \sum p_T^j + E_T$

For $bb\ell^+\ell^+ E_T$ and $bb\ell^-\ell^- E_T$ events for two points on the Model Line with $m_{\tilde{g}} = 570$ and 755 GeV:

Rescaled to compare the shapes:

In the classic collider signatures for SUSY,

Invisible LSPs \rightarrow Missing Energy \rightarrow No Mass Peaks

Compressed SUSY provides an exception, because of the long lifetime of \tilde{t}_1 :

Stoponium = $\eta_{\tilde{t}}$ = s-wave $\tilde{t}_1^* \tilde{t}_1$ bound state

Drees and Nojiri 1994 proposed looking for stoponium in

 $pp \to \eta_{\tilde{t}} \to \gamma \gamma$

Stoponium is very narrow, so the width is effectively that of the detector resolution for diphotons, of order 1% at CMS and ATLAS.

Stoponium in Compressed SUSY:

- is always stable enough to form
- Binding energy of $\eta_{\tilde{t}}$ is a few GeV
- $\Gamma_{\eta_{\tilde{t}}}$ is a few MeV
- $\bullet~M_{\eta_{\tilde{t}}}$ between about 400 and 750 GeV
- $\bullet \ {\rm BR}(\eta_{\tilde{t}} \to gg)$ dominates (but huge background)
- $\mathrm{BR}(\eta_{\tilde{t}} \to \gamma \gamma) \approx 0.4\%$

The process

$$pp \to \eta_{\tilde{t}} \to \gamma\gamma$$

is clearly NOT a discovery mode for supersymmetry.

Importance is that it will give a uniquely precise measurement of the top-squark mass.

Look for a narrow diphoton mass peak against a smoothly falling background.

The irreducible physics backgrounds at leading order:

$q\overline{q}$	\rightarrow	$\gamma\gamma$	(tree-level)
gg	\rightarrow	$\gamma\gamma$	(1-loop)

Backgrounds from fakes are thought to be smaller.

Diphoton backgrounds at LHC, at leading order, after cuts:

Note: actual background will be obtained from LHC data!

Luminosity needed for expected significances, for two model lines:

Detectability for $m_{\eta_{\tilde{t}}} = 500 \text{ GeV}$ will require more than 100 fb^{-1} . For smaller $m_{\eta_{\tilde{t}}}$, a few $\times 10 \text{ fb}^{-1}$ might do it (if we're lucky).

Summary:

• The talk was its own summary!

Extra slide: \mathbb{E}_T distribution

Extra slide: Lepton p_T distributions

Extra slide: b jet p_T distributions

Extra slide: jet p_T distributions

