Mass determination with missing energy at the LHC

Zhenyu Han
University of California, Davis
arXiv: 0802.4290, H. Cheng, D. Engelhardt, J. Gunion, ZH,
B. McElrath

April 28, 2008 @ Pheno 2008

Outline

Introduction: mass determination with missing particles

Kinematic Constraints

Conclusion

Outline

Introduction: mass determination with missing particles

Kinematic Constraints

Conclusion

New physics and missing particles at the LHC

- Dark Matter+Electroweak constraints \Rightarrow stable neutral particle.
SUSY with R-parity, little Higgs with T-Parity, UED with KK parity...

At LHC,

- We will see large missing transverse momenta.
- Mass determination is hard - there is no peak in invariant mass distributions.

Mass determination methods

- Total cross-section, model-dependent.

Mass determination methods

- Total cross-section, model-dependent.
- Kinematic variables: $p_{T}, H_{T}, M_{T 2}$.

Often sensitive to mass differences, not the absolute mass scale.

Mass determination methods

- Total cross-section, model-dependent.
- Kinematic variables: $p_{T}, H_{T}, M_{T 2}$. Often sensitive to mass differences, not the absolute mass scale.
- The edge/end-point method.

Mass determination methods

- Total cross-section, model-dependent.
- Kinematic variables: $p_{T}, H_{T}, M_{T 2}$. Often sensitive to mass differences, not the absolute mass scale.
- The edge/end-point method.
- Kinematic constraints.

Outline

Introduction: mass determination with missing particles

Kinematic Constraints

Conclusion

The event topology

Example: $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow q \tilde{q} I \rightarrow q \tilde{\chi}_{1}^{0} I I$.

- This could come from a longer decay chain as long as there is no extra missing particle.
- Assume all intermediate particles on-shell.
- Assume $m_{N}=m_{N^{\prime}}, m_{X}=m_{X^{\prime}}, m_{Y}=m_{Y^{\prime}}, m_{Z}=m_{Z^{\prime}}$.

Count the constraints

One event, 6 constraints:

$$
\left(M_{N}^{2}=\right) \quad p_{1}^{2}=p_{2}^{2}
$$

Count the constraints

One event, 6 constraints:

$$
\left.\begin{array}{rl}
\left(M_{N}^{2}=\right) & p_{1}^{2}
\end{array}=p_{2}^{2}, ~ 子 p_{2}\right)^{2}, ~\left(p_{1}+p_{3}\right)^{2}=\left(p_{2}+p_{4}\right)
$$

Count the constraints

One event, 6 constraints:

$$
\begin{aligned}
\left(M_{N}^{2}=\right) & p_{1}^{2} & =p_{2}^{2}, \\
\left(M_{X}^{2}=\right) & \left(p_{1}+p_{3}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(M_{Y}^{2}=\right) & \left(p_{1}+p_{3}+p_{5}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2},
\end{aligned}
$$

Count the constraints

One event, 6 constraints:

$$
\begin{aligned}
& \left(M_{N}^{2}=\right) \quad p_{1}^{2}=p_{2}^{2}, \\
& \left(M_{X}^{2}=\right) \\
& \left(p_{1}+p_{3}\right)^{2}=\left(p_{2}+p_{4}\right)^{2}, \\
& \left(M_{Y}^{2}=\right) \quad\left(p_{1}+p_{3}+p_{5}\right)^{2}=\left(p_{2}+p_{4}+p_{6}\right)^{2} \text {, } \\
& \left(M_{Z}^{2}=\right)\left(p_{1}+p_{3}+p_{5}+p_{7}\right)^{2}=\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2} .
\end{aligned}
$$

Count the constraints

One event, 6 constraints:

$$
\begin{array}{rlrl}
\left(M_{N}^{2}=\right) & p_{1}^{2} & =p_{2}^{2} \\
\left(M_{X}^{2}=\right) & \left(p_{1}+p_{3}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(M_{Y}^{2}=\right) & \left(p_{1}+p_{3}+p_{5}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2} \\
\left(M_{Z}^{2}=\right) & \left(p_{1}+p_{3}+p_{5}+p_{7}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2} . \\
& \\
& p_{1}^{x}+p_{2}^{x}=p_{\text {miss }}^{x}, & p_{1}^{y}+p_{2}^{y}=p_{\text {miss }}^{y} .
\end{array}
$$

Count the constraints

One event, 6 constraints:

$$
\begin{array}{rlrl}
\left(M_{N}^{2}=\right) & p_{1}^{2} & =p_{2}^{2}, \\
\left(M_{X}^{2}=\right. & \left(p_{1}+p_{3}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(M_{V}^{2}=\right) & \left(p_{1}+p_{3}+p_{5}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2}, \\
\left(M_{Z}^{2}=\right) & \left(p_{1}+p_{3}+p_{5}+p_{7}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2} . \\
& \\
p_{1}^{x}+p_{2}^{x}=p_{\text {miss }}^{x}, & p_{1}^{y}+p_{2}^{y}=p_{\text {miss }}^{y} .
\end{array}
$$

But 8 unknowns: p_{1}, p_{2}. Number of equations less than number of unkowns.

A pair of events.

Add one event,

$$
\begin{aligned}
q_{1}^{2} & =q_{2}^{2} \\
\left(q_{1}+q_{3}\right)^{2} & =\left(q_{2}+q_{4}\right)^{2} \\
\left(q_{1}+q_{3}+q_{5}\right)^{2} & =\left(q_{2}+q_{4}+q_{6}\right)^{2} \\
\left(q_{1}+q_{3}+q_{5}+q_{7}\right)^{2} & =\left(q_{2}+q_{4}+q_{6}+q_{8}\right)^{2} . \\
q_{1}^{x}+q_{2}^{x}=q_{\text {miss }}^{x} & =q_{1}^{y}+q_{2}^{y}=q_{\text {miss. }}^{y} .
\end{aligned}
$$

A pair of events.

Add one event,

$$
\begin{array}{rllll}
q_{1}^{2} & = & q_{2}^{2} & =p_{2}^{2} \\
\left(q_{1}+q_{3}\right)^{2} & = & \left(q_{2}+q_{4}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(q_{1}+q_{3}+q_{5}\right)^{2} & = & \left(q_{2}+q_{4}+q_{6}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2}, \\
\left(q_{1}+q_{3}+q_{5}+q_{7}\right)^{2} & = & \left(q_{2}+q_{4}+q_{6}+q_{8}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2}, \\
q_{1}^{x} & +q_{2}^{x}=q_{\text {miss }}^{x}, \quad q_{1}^{y}+q_{2}^{y} & =q_{\text {miss }}^{y} .
\end{array}
$$

A pair of events.

Add one event,

$$
\begin{array}{rll}
q_{1}^{2} & = & q_{2}^{2} \\
\left(q_{1}+q_{3}\right)^{2} & =p_{2}^{2}, \\
\left(q_{1}+q_{3}+q_{5}\right)^{2} & =\left(q_{2}+q_{4}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(q_{1}+q_{3}+q_{5}+q_{7}\right)^{2} & =\left(q_{4}+q_{6}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2}, \\
& \left.=q_{6}+q_{8}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2}, \\
q_{1}^{\times} & +q_{2}^{x}=q_{\text {miss }}^{\star}, \quad q_{1}^{y}+q_{2}^{y} & =q_{\text {miss }}^{y} .
\end{array}
$$

8 more unknowns q_{1}, q_{2}, but 10 more equations. 16 unknowns vs 16 equations, we can solve the system and obtain discrete solutions.

A pair of events.

Add one event,

$$
\begin{array}{rll}
q_{1}^{2} & = & q_{2}^{2} \\
\left(q_{1}+q_{3}\right)^{2} & =p_{2}^{2}, \\
\left(q_{1}+q_{3}+q_{5}\right)^{2} & =\left(q_{2}+q_{4}\right)^{2} & =\left(p_{2}+p_{4}\right)^{2}, \\
\left(q_{2}+q_{4}+q_{6}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}\right)^{2}, \\
\left(q_{1}+q_{3}+q_{5}+q_{7}\right)^{2} & =\left(q_{2}+q_{4}+q_{6}+q_{8}\right)^{2} & =\left(p_{2}+p_{4}+p_{6}+p_{8}\right)^{2}, \\
q_{1}^{x} & +q_{2}^{x}=q_{\text {miss }}^{x}, \quad q_{1}^{y}+q_{2}^{y} & =q_{\text {miss }}^{y} .
\end{array}
$$

8 more unknowns q_{1}, q_{2}, but 10 more equations. 16 unknowns vs 16 equations, we can solve the system and obtain discrete solutions.
The system can be reduced to 13 linear equations+ 3 quadratic equations, so generally we have 8 complex solutions. Only keep real and positive ones for masses.

An ideal example

$\tilde{q} \tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} q \tilde{\chi}_{2}^{0} \rightarrow q \tilde{l / q \tilde{I}\left\|\rightarrow q \tilde{\chi}_{1}^{0}\right\| q \tilde{\chi}_{1}^{0} \|}$ SPS1a, masses: ($97.4,142.5,180.3,564.8$) GeV

2 solutions per pair on average.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.
- Finite width. $5 \mathrm{GeV}, 20 \mathrm{MeV}, 200 \mathrm{MeV}$ for $\tilde{q}_{L}, \tilde{\chi}_{2}^{0}$ and $\tilde{\ell}_{R}$.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.
- Finite width. $5 \mathrm{GeV}, 20 \mathrm{MeV}, 200 \mathrm{MeV}$ for $\tilde{q}_{L}, \widetilde{\chi}_{2}^{0}$ and $\tilde{\ell}_{R}$.
- Flavor splitting. $m_{\tilde{d}_{L}}-m_{\tilde{u}_{L}} \sim 6 \mathrm{GeV}$.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.
- Finite width. $5 \mathrm{GeV}, 20 \mathrm{MeV}, 200 \mathrm{MeV}$ for $\tilde{q}_{L}, \widetilde{\chi}_{2}^{0}$ and $\tilde{\ell}_{R}$.
- Flavor splitting. $m_{\tilde{d}_{L}}-m_{\tilde{u}_{L}} \sim 6 \mathrm{GeV}$.
- Initial/final state radiation.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.
- Finite width. $5 \mathrm{GeV}, 20 \mathrm{MeV}, 200 \mathrm{MeV}$ for $\tilde{q}_{L}, \widetilde{\chi}_{2}^{0}$ and $\widetilde{\ell}_{R}$.
- Flavor splitting. $m_{\tilde{d}_{L}}-m_{\tilde{u}_{L}} \sim 6 \mathrm{GeV}$.
- Initial/final state radiation.
- Extra jets. $\widetilde{g} \rightarrow q \widetilde{q}_{L}$.

Realistic case

- Wrong combinations. One event, 8 combinations for $2 \mu 2 e$ channel, 16 for 4μ or $4 e$ channel. A pair of events, 64,128 or 256 combinations.
- Finite width. $5 \mathrm{GeV}, 20 \mathrm{MeV}, 200 \mathrm{MeV}$ for $\tilde{q}_{L}, \widetilde{\chi}_{2}^{0}$ and $\widetilde{\ell}_{R}$.
- Flavor splitting. $m_{\tilde{d}_{L}}-m_{\tilde{u}_{L}} \sim 6 \mathrm{GeV}$.
- Initial/final state radiation.
- Extra jets. $\widetilde{g} \rightarrow q \widetilde{q}_{L}$.
- Experimental resolutions. Simulated with ATLFAST.
- Background events.

Realistic solution distributions

Cuts:

1. 4 isolated leptons with $p_{T}>10 \mathrm{GeV},|\eta|<2.5$, consistent flavors and charges.
2. No b-jet, ≥ 2 jets with $p_{T}>100 \mathrm{GeV},|\eta|<2.5$. Take 2 highest $-p_{T}$ jets as partiles 7 and 8 .
3. $p_{\text {Tmiss }}>50 \mathrm{GeV}$.

About 1000 events (~ 700 signals) after cuts for $300 \mathrm{fb}^{-1}$.

Fit the masses

Fitting each curve using a sum of a Gaussian and a quadratic polynomial and take the peak positions as the estimated masses, we get $\{77.8,135.6,182.7,562.0\} \mathrm{GeV}$. Averaging over 10 different data sets:

$$
\begin{aligned}
& m_{N}=76.7 \pm 1.4 \mathrm{GeV}, \quad m_{X}=135.4 \pm 1.5 \mathrm{GeV} \\
& m_{Y}=182.2 \pm 1.8 \mathrm{GeV}, \quad m_{Z}=564.4 \pm 2.5 \mathrm{GeV}
\end{aligned}
$$

The statistical errors are very small, but the masses are biased. Inputs: ($97.4,142.5,180.3,564.8$) GeV

Some model-independent techniques I. Cut off "bad" combinations

- For the ideal case, the correct combination of one event can always pair with any other event and yield solutions. So the number of events that pair with this combination is maximized as $N_{\text {evt }}-1$.
- After smearing, this is no longer true, but the correct combinations still have statistically larger number of events to pair.
- We cut on this number so that we have about 4 combinations per event left (originally 11).

II. Number of solutions weighting.

A pair with many solutions enters with a large weight, although at most one of the solutions can be the true masses.
\rightarrow Treat each pair equally, weight the solutions by $1 / n$, $\mathrm{n}=$ number of solutions for the pair.

III. Cut on mass difference

Some solutions may have one or more, but not all four masses to be close to the true masses. Remove these solutions by a mass window cut.

Require all three mass differences to be within the mass window defined by $0.7 \times$ peak height.

Mass peaks with smaller biases SPS1a

10 sets:

$$
\begin{aligned}
& m_{N}=94.1 \pm 2.8 \mathrm{GeV}, \quad m_{X}=138.8 \pm 2.8 \mathrm{GeV} \\
& m_{Y}=179.0 \pm 3.0 \mathrm{GeV}, \quad m_{Z}=561.5 \pm 4.1 \mathrm{GeV}
\end{aligned}
$$

Compare: $\{97.4,142.5,180.3,564.8\} \mathrm{GeV}$

Another mass point

Inputs $\{85.3,128.4,246.6,431.1 / 438.6\} \mathrm{GeV}$.

10 sets:
$m_{N}=85 \pm 4 \mathrm{GeV}, m_{X}=131 \pm 4 \mathrm{GeV}, m_{Y}=251 \pm 4 \mathrm{GeV}, m_{Z}=444 \pm 5 \mathrm{GeV}$.

With this precision, we know more about the "model" and thus know how to Monte Carlo. The remaining biases can be removed by comparing with simulation.

Outline

Introduction: mass determination with missing particles

Kinematic Constraints

Conclusion

Conclusion

For mass determination with 2 missing particles,

- Use as much as kinematic information as possible, esp. missing transverse momentum.
- Mass-shell constraints.
- Less events needed than the endpoint/edge method.
- A good start point for a more complicated method, ex, a full likelyhood fit with matrix element, PDF...

