

1

New Results from MINOS

Robert Zwaska, Fermilab for the MINOS Collaboration

Pheno 2008 Symposium April 28, 2008

The MINOS Experiment

Minn.

- High-intensity neutrino beam for oscillation experiments
 - > Predominantly v_{μ}
- Neutrino beam travels to northern Minnesota
 - ➤ 735 km baseline
 - Intense source at Fermilab
 - Oscillated source in Minnesota
- Commissioned in 2004
- Operating since 2005

Overview

- Elements of the experiment: beam and detectors
- Neutrino interaction types and their measurement in the MINOS detectors
- Measurement of muon-neutrino disappearance and oscillation
 > Atmospheric Δm²
- Search for active-neutrino disappearance
 Sterile Neutrino search with Neutral Current interactions
- Sensitivity for electron-neutrino appearance
 ➤ unmeasured sin²(2θ₁₃)
- Future Prospects & Summary

The Neutrino Beam

NuMI: Neutrinos at the Main Injector

- 10 μ s pulse of 120 GeV protons every 2.2 s
 - > 2.5 x 10^{13} protons per pulse
 - > 200 kW typical beam power
- Pions produces by 2 interaction length target
 - Focuses by two magnetic horns
 - > Decay in flight to v_{μ}
- Energy spectrum is adjustable by moving the target with respect to horns
- 4.5×10^{20} total protons delivered

The MINOS Detectors

- Steel/Scintillator sandwiches
- Magnetized
- Tracking calorimeters
- Functionally identical
- 1 and 735 km from the neutrino production target
- 980 and 5400 tons

Near Detector

Far Detector

Interaction Types

Event Topologies

Monte Carlo

 \mathbf{v}_{μ} CC Event

long μ track & hadronic activity at vertex

Event Topologies

Monte Carlo

 v_e CC Event

v_{μ} CC Event

long μ track & hadronic activity at vertex

short event, often diffuse

n

 \mathbf{k}_p

Event Topologies

Monte Carlo

v_{μ} CC Event

long µ track & hadronic activity at vertex

short event, often diffuse

v_e CC Event

short, with typical EM shower profile

The v_{μ} disappearance analysis: - Run I+IIa (2.5 x 10²⁰ POT) shown here - Paper in draft form for full Run I+II (3.25 x 10²⁰ POT)

ν_{μ} Charged Current Energy Spectrum

Measurement errors are 1σ , 1 DOF

Allowed Parameter Space

Results from Run I+IIa presented at Lepton-Photon 2007. 2.5×10^{20} Protons on Target

- Results expected shortly with 3.25 x 10²⁰ POT:
 - More data
 - New track-based PID
 - Improved systematic errors
- Plans for future analyses:
 - Looser cuts as systematics are better understood
 - Add anti-neutrinos
 - Add rock muons
 - Search for or rule out exotic scenarios

Search for active-neutrino disappearance: - Directly test for v_s using Neutral Current Interactions with Run I+IIa (2.46 x 10²⁰ POT)

Neutral Current Energy Spectra

- NC selected Data and MC energy spectra for Near Detector
- Good agreement between Data and Monte Carlo
- Discrepancies much smaller than systematic uncertainties
- NC events are selected with 90% efficiency and 60% purity

Neutral Current Energy Spectra

- NC selected Data and MC energy spectra for Near Detector
- Good agreement between Data and Monte Carlo
- Discrepancies much smaller than systematic uncertainties
- NC events are selected with 90% efficiency and 60% purity

- Far Detector reconstructed energy spectra for NClike events
- Oscillation parameters are fixed. MC predictions with $\Theta_{13}=0$ and Θ_{13} at the CHOOZ limit are shown
 - v_e charged current interactions selected as NC in this analysis
- The expected total number of events is given by

 $MC = NC (1 - f) + CC v_{\mu} + CC v_{e} + CC v_{\tau}$

where f is the fraction of total neutral current events that disappear

➤ For $E_{vis} < 3 \text{ GeV} \implies f < 0.35, 90\% \text{ C.L.}$

Simplified 4-Flavor Model : 3+1

- Assumes $\Delta m_{41}^2 = 0$
 - Oscillation at single mass scale
 - Oscillation probabilities simplify to:

$$\begin{aligned} P_{\nu_{\mu} \to \nu_{\mu}} &= 1 - 4 \left| U_{\mu 3} \right|^{2} \left(1 - \left| U_{\mu 3} \right|^{2} \right) \Delta_{31}^{2} \\ P_{\nu_{\mu} \to \nu_{e}} &= 4 \left| U_{\mu 3} \right|^{2} \left| U_{e3} \right|^{2} \Delta_{31}^{2} \\ P_{\nu_{\mu} \to \nu_{s}} &= 4 \left| U_{\mu 3} \right|^{2} \left| U_{s3} \right|^{2} \Delta_{31}^{2} \\ P_{\nu_{\mu} \to \nu_{\tau}} &= 1 - P_{\nu_{\mu} \to \nu_{\mu}} - P_{\nu_{\mu} \to \nu_{e}} - P_{\nu_{\mu} \to \nu_{s}} \end{aligned}$$

- Fit for Δm_{31}^2 , $|U_{\mu 3}|^2$ and $|U_{s3}|^2$
- Joint fit of NC and CC spectra
- Fix $|U_{e3}|^2 = 0$ and 0.04 (CHOOZ limit)

$$\sin^2 2\theta_{23} \leftrightarrow 4 \left| U_{\mu 3} \right|^2 \left(1 - \left| U_{\mu 3} \right|^2 \right)$$
$$\Delta_{31}^2 = \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)$$

Simplified 4-Flavor Model : 3+1

• Assumes $\Delta m_{41}^2 = 0$

Sensitivity for v_e appearance using data-driven methods with Run I+II (3.25 x 10²⁰ POT)

Background is key for v_e Appearance Measurement

MINOS Near Detector Selected MC Event Spectrum

MINOS Far Detector Selected Event Spectrum

- Measure the main background components in Near Detector
 - > NC, v_{μ} CC, and beam v_{e} CC interactions
- Extrapolate each to the Far Detector,
 - > oscillate the v_{μ} CC component to obtain the v_{τ} CC

Near Detector v_e Events

- v_e selection algorithm based on characteristics of electromagnetic showers
- MC tuned to bubble chamber experiments for hadronization models
- However, the available literature is for higher energy than our region of interest
- Not surprisingly, the data/MC shows disagreement with the model

Thus, we have developed two **data-driven methods** to correct the model to match the data

•The two data-driven methods, are in good agreement in the Near Detector NC and v_{μ} CC background for the v_e analysis

•Each background in the Horn on/off method is extrapolated to the Far Detector and data-driven sensitivity limits are obtained

Future Data-Driven v_e Sensitivity

- Projected limits shown for expected MINOS exposures using normal hierarchy
 - Inverted hierarchy shown only for lowest exposure for simplicity
- Data-driven systematics at 5% is a reasonable expectation as our understanding of the data improves

It is possible with MINOS to achieve half the current CHOOZ limit!

Conclusion

- MINOS sees a large disappearance of muon-neutrinos from the NuMI neutrino beam
 - > Significance in low-energy region is 6.5 σ
 - Disappearance is consistent with our expectations of neutrino oscillations

$$|\Delta m|_{32}^{2}|=0.00238^{+0.00020}_{-0.00016} \text{ eV}^{2}/\text{c}^{4}$$
 $\sin^{2}(2\theta_{23})=1.00_{-0.08}$

- New result forthcoming for Neutrino 2008
- Neutral Current interactions have been studied for evidence of sterile neutrinos
 - From 3-flavor analysis:

for $E < 3 \text{ GeV} \Rightarrow f < 0.35$ to 90% C.L.

- Results consistent with no sterile neutrino admixture
- ➤ 4-flavor analysis best fit values:

$$|U_{s3}|^2 = 0.14^{+0.18}_{-0.13}$$
, for $|U_{e3}|^2 = 0$ (no v_e admixture)
 $|U_{s3}|^2 = 0.21^{+0.20}_{-0.12}$, for $|U_{e3}|^2 = 0.04$ (v_e admixture)

- Electron-neutrino appearance will be studied using a data-driven background estimation
 - Sensitivity will be close to the CHOOZ limit this year
 - ➤ With 2-3 years more running, may halve the CHOOZ limit

The MINOS Collaboration

Argonne • Arkansas Tech • Athens • Benedictine • Brookhaven • Caltech Cambridge • Campinas • Fermilab • Harvard • IIT • Indiana • Minnesota-Duluth Minnesota-Twin Cities • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary 23

Unconstrained Fit

Future MINOS v_{μ} sensitivity

MINOS Sensitivity as a function of Integrated POT

90% CL sensitivity for future MINOS exposures. Statistical errors only