The First Measurement of the Forward-Backward Charge Asymmetry in Top Pair Production at DØ

Isaac Hall Michigan State University

SM Asymmetry

- In the Standard model, top production is symmetric at α_s^2
- At α_s³ or higher, interference terms can give rise to asymmetric production
- A calculation for t-tbar+jet gives:
 - -(7-8)% @ LO (~α_s³)
 - -(0-2)% @ NLO (~α_s⁴)
 - hep-ph/0703120
- Total asymmetry predicted to be about 5%
 - Kuhn et al. (LO), Bowen et al. (Ω_s^3

Box/Tree Interference

"4 Jets", Positive contribution

4 and \geq 5 Jets

Forward-Backward Asymmetry

- At the Tevatron, the charge asymmetry in top pair production is visible as a forwardbackward asymmetry.
 - Is it the top or the anti-top that is preferentially produced in the direction of the incoming proton?
 - Sensitive to new physics.
- Difficult to measure at LHC

The DØ Detector

Final State Selection

- Select Events with at least 4 jets in lepton+jets channel, with a loose btag.
- Use kinematic fitter to reconstruct Δy, according to top pair hypothesis, resolutions, b-tags, and the constraints:
 - M(W)=80.4 GeV
 - M(t) = 170 GeV
 - 2 times stronger than using lepton rapidity

- Combine Information from both top quarks
- Invariant to boosts along the beam axis

Analysis

- Select Events and estimate signal and background contribution
- Reconstruct event kinematics, label as forward or backward
- Compute Asymmetry
 - Sample composition and asymmetry extracted simultaneously through maximum likelihood fit
 - Choose variables to not bias A_{fb}

Acceptance

- We know that the asymmetry changes over phase space, but not the details of how it changes.
- For this reason, we do not apply acceptance corrections back to the particle level.

- •Acceptance effects approximated through simple parton level cuts
 - •Does not change asymmetry be more than 2%
 - •Analysis designed to allow this approximation to work

Reconstruction and Dilution

- Misreconstruction of ∆y dilutes the observed asymmetry
 - D=2p-I
- At small Δy , much harder to get right the sign of Δy .
- A dilution correction is very model dependent.
 - May kill sensitivity to new physics
 - Therefore, we provide a parameterization rather than a correction.

With acceptance and dilution parameterizations, any model can be compared to this analysis

Asymmetry

Sample composition and asymmetry fit simultaneously

Beyond the SM

- Resonant production?
 - Can probe for wide resonances
 - Z' resonances
 - Asymmetry varies by model
 - asymmetries typically positive
 - leptophobic Z' (hep-ph/0408098)
 - top color and top flavor models (hep-ph/9602390)
- Interference with axigluon production? (arXiv:0709.1652)
 - asymmetries typically negative

Beyond the SM: Z'

- Production through Z' is asymmetric in most models
 - If Z like couplings assumed, A_{fb} ~13-35%
 - Unique probe for wide resonance
- Can put limits on the fraction of top pairs produced via Z' (f).
 - Compliments searches for narrow resonances
- High measured asymmetry means that our data is compatible with a large Z' fraction

Summary

- Top pair production asymmetry measured at DØ
- Z' t-tbar production costrained
- Results can be compared any model, including new physics that is calculated to particle level.
- Published in Phys. Rev. Lett. 100 142002 (2008)
 - arXiv:0712.0851