The First Measurement of the Forward-Backward Charge Asymmetry in Top Pair Production at DØ

Isaac Hall
Michigan State University

SM Asymmetry

- In the Standard model, top production is symmetric at $\alpha_{s}{ }^{2}$
- At $\alpha_{s}{ }^{3}$ or higher, interference terms can give rise to asymmetric production
- A calculation for t-tbar+jet gives:
- -(7-8)\% @ LO $\left(\sim \alpha_{s}^{3}\right)$
- -(0-2)\% @ NLO $\left(\sim \alpha_{s}^{4}\right)$

Box/Tree Interference

"4 Jets", Positive contribution
ISR/FSR Interference

" ≥ 5 Jets", Negative contribution

Measurements split between 4 and ≥ 5 Jets

- Total asymmetry predicted to be about 5\%
- Kuhn et al. (LO), Bowen et al.
@ $\alpha_{s}{ }^{3}$

Forward-Backward Asymmetry

- At the Tevatron, the charge asymmetry in top pair production is visible as a forwardbackward asymmetry.
- Is it the top or the anti-top that is preferentially produced in the direction of the incoming proton?
- Sensitive to new physics.
- Difficult to measure at LHC

$$
A_{f b}=\frac{N_{f}-N_{b}}{N_{f}+N_{b}}
$$

The DØ Detector

Final State Selection

- Select Events with at least 4 jets in lepton+jets channel, with a loose btag.
- Use kinematic fitter to reconstruct Δy, according to top pair hypothesis, resolutions, b-tags, and the constraints:
- $M(W)=80.4 \mathrm{GeV}$
- $M(\mathrm{t})=170 \mathrm{GeV}$
- 2 times stronger than using lepton rapidity
o Define:

$$
\begin{aligned}
& N_{f}=N_{y_{t}>y_{\bar{t}}} \\
& N_{b}=N_{y_{\bar{t}}>y_{t}}
\end{aligned}
$$

- Combine Information from both top quarks
- Invariant to boosts along the beam axis

Analysis

- Select Events and estimate signal and background contribution
- Reconstruct event kinematics, label as forward or backward
- Compute Asymmetry
- Sample composition and asymmetry extracted simultaneously through maximum likelihood fit
- Choose variables to not bias A_{fb}

Acceptance

- We know that the asymmetry changes over phase space, but not the details of how it changes.
- For this reason, we do not apply acceptance corrections back to the particle level.

What regions of phase space are probed?

- Acceptance effects approximated through simple parton level cuts
-Does not change asymmetry be more than 2%
- Analysis designed to allow this approximation to work

Reconstruction and Dilution

- Misreconstruction of Δy dilutes the observed asymmetry
- $D=2 p-1$
- At small Δy, much harder to get right the sign of Δy.
- A dilution correction is very model dependent.
- May kill sensitivity to new physics
- Therefore, we provide a parameterization

> With acceptance and dilution parameterizations, any model can be compared to this analysis rather than a correction.

Asymmetry

Sample composition and asymmetry fit simultaneously

MC@NLO Predictions

Measured Asymmetries

$$
A_{f b}^{p r e d}=(0.8 \pm 0.2(\text { stat }) \pm 1(a c c)) \% \quad A_{f b}=(12 \pm 8(\text { stat }) \pm 1(\text { syst })) \%
$$

As a function of number of Jets:

$$
\begin{array}{lc}
A_{f b, 4}^{\text {pred }}=(2.3 \pm 0.2(\text { stat }) \pm 1(\text { acc }) \pm 0.1(\text { dilu })) \% & A_{f b, 4}=(19 \pm 9(\text { stat }) \pm 2(\text { syst })) \% \\
A_{f b,, \geq 5}^{\text {pred }}=(-4.9 \pm 0.4(\text { stat }) \pm 1(\text { acc }) \pm 0.2(\text { dilu })) \% & A_{f b, \geq 5}=(-16 \pm 16(\text { stat }) \pm 3(\text { syst })) \%
\end{array}
$$

Beyond the SM

- Resonant production?
- Can probe for wide resonances
- Z' resonances
- Asymmetry varies by model
- asymmetries typically positive
- leptophobic Z' (hep-ph/0408098)
- top color and top flavor models (hep-ph/9602390)
- Interference with axigluon production? (arXiv:0709.1652)
- asymmetries typically negative

Beyond the SM: Z

- Production through Z^{\prime} is asymmetric in most models
- If Z like couplings assumed, $\mathrm{A}_{\mathrm{fb}} \sim 13-35 \%$
- Unique probe for wide resonance
- Can put limits on the fraction of top pairs produced via Z^{\prime} (f).
- Compliments searches for narrow resonances
- High measured asymmetry means that our data is compatible with a large Z^{\prime} fraction

Summary

- Top pair production asymmetry measured at DØ
- Z' t-tbar production costrained
- Results can be compared any model, including new physics that is calculated to particle level.
- Published in Phys. Rev. Lett. I 00 I42002 (2008)
- arXiv:0712.085I

