Search for Heavy Top-like Quarks Using Lepton + Jets Events at CDF

Alison Lister

UC Davis

On behalf of the CDF collaboration

PHENO08 29th April 2008

Alison Lister, UC Davis

1

- Theoretical Motivation
- Analysis Method
- Results
- Conclusions

Theoretical Motivation

- Possible 4-th generation quark with mass of few hundreds GeV
 - Consistent with EWK data
 - Oblique corrections drive Higgs Mass to ~ 500 GeV
 - C.He et al, Phys.Rev. D64 (2001) 053004
 - Almost degenerate b' and t' masses: M(t') M(b') < M(W)
 - Decays as top: t´ -> Wq (q=d,c,b)
- Heavy top-like quark appears in many theories
- Usually too heavy for Tevatron
 - e. g. Little Higgs (heavy Top with mass ~1-2 TeV)
 - M. Perelstein et al., Phys.Rev. D69 (2004) 075002
 - G. Azuelos et al., Eur.Phys.J. C39S2 (2005) 13-24
- New mirror quarks with not necessarily same properties as first three generations
 - "Beautiful Mirrors": new heavy quarks decaying into Wb
 - Motivated by data
 - D. Choudhury et al., Phys.Rev. D65 (2002) 053002

Alison Lister, UC Davis

EWK Precision Data

	Measurement	Fit	O ^{meas} -C	$\mathcal{O}^{\text{fit}}/\sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767		
m _z [GeV]	91.1875 ± 0.0021	91.1874		
Г _z [GeV]	$\bf 2.4952 \pm 0.0023$	2.4959	-	
σ_{had}^{0} [nb]	41.540 ± 0.037	41.478		•
R _I	20.767 ± 0.025	20.743		
A ^{0,I} fb	0.01714 ± 0.00095	0.01643		
A _I (P _τ)	0.1465 ± 0.0032	0.1480	-	
R _b	0.21629 ± 0.00066	0.21581		
R _c	0.1721 ± 0.0030	0.1722		
A ^{0,b}	0.0992 ± 0.0016	0.1038		
A ^{0,c}	0.0707 ± 0.0035	0.0742		
A _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935		
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668		
A _I (SLD)	0.1513 ± 0.0021	0.1480		•
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		
m _w [GeV]	80.398 ± 0.025	80.377		
Г _w [GeV]	$\textbf{2.097} \pm \textbf{0.048}$	2.092		
m _t [GeV]	172.6 ± 1.4	172.8	•	
March 2008			0 1	2 3

- Discrepancy with the SM!
- A_{fb}^{b-}b-quark forwardbackward asymmetry

~2.9 σ away (LEP)

- As a result: $\sin \theta_{W, lep}$ is ~3.6 σ away from $\sin \theta_{W, had}$
- Suppose A_{fb}^b measurement has larger uncertainty or systematically off, and we force:

 $\sin \theta_{\text{W, had}} = \sin \theta_{\text{W, lep}}$

PHENO08 29th April 2008

Beautiful mirror quarks

- New physics in Z->bb? Different coupling of the b-quark to Z?
 - C. Wagner et al, Phys.Rev. D65 (2002) 053002
- Mirror quarks of b-quarks improve the fit
 - couple to b's and less to d's or c's
- Two scenarios: with and without top mirror quarks

This Search

- Assume t' pair production with strong SM couplings
- Search for new quark decays into Wq: t´ -> Wq
- Assume t´ ->Wb´ is kinematically suppressed and V_{t´b} ~ V_{t´q}
- Assume BR(t'->Wq) ~ 100%
- Look for lepton + jet events

Event Selection

- One isolated central electron or muon
- Lepton $P_T > 20 \text{ GeV}$
- ≥ 4 jets (E_T > 20 GeV)
- Missing $E_T > 20$ GeV
- QCD removal
 - E_T leading jet > 60 GeV

Analysis Methodology

- Binned likelihood fit of the data to H_T vs M_{rec} distributions
- H_T is the total transverse energy of the event

$$H_T = \sum_{jets} E_{T,jets} + E_{T,lepton} + \not\!\!\!E_T$$

- M_{rec} is the reconstructed mass of the top quark (using width of the top)
 - Use χ² function to choose combination of event objects that best fits top decay

Parameters of the fit

- ť
 - Varies freely
- Top
 - Constrained to SM crosssection
- EWK
 - Varies freely
- QCD
 - Constrained by fit to missing E_{T}

H_T and M_{rec}

- Distributions with expected number of SM background events
- Constant number of t' events
 added
 - ť masses 180-500 GeV

- Better separation at higher masses
- But lower expected cross-sections

Handling Systematics

$$\mathcal{L}(\sigma_{t'}|n_i) = \prod_{i,k} P(n_i|\mu_i) \times G(\nu_k|\tilde{\nu}_k, \sigma_{\nu_k})$$

Nuisance parameters

- Effects evaluated based on measuring how the σ_t, changes given t´ exists
- The shifts measured by drawing "pseudoexperiments" from shifted templates and fitted to nominal

Systematics

- Q² scale for EWK backgrounds
- Jet Energy Scale
- Luminosity
- Theory uncertainty on top and t' crosssections
- ISR + FSR
- PDFs
- Trigger Efficiencies
- Lepton ID /efficiencies / data vs MC

Data: H_T vs M_{rec}

PHENO08 29th April 2008

Alison Lister, UC Davis

Expected and Observed Limits

Exclude with 95% CL t' mass below 284 GeV/c²

Is there a sign of some new physics at high H_T and high M_{rec} ?

- In bins of 25 GeV x 25 GeV/ c^2
- Start with the upper-right 1x1 bin, then 2x2, then 3x3, ... up to 15x15
 - Calculate number of events and background
 - Get the significance
- Find the choice with the greatest significance: 8x8
 - Observe 11
 - Expect 4.7
 - p-value 0.0089
- Use MC pseudo-experiments to find the p-value for seeing that great a significance in 1 bin
 - Accounts for the trials factor
 - Global p-value 2.8%
 - Sigma ~1.9

No significant excess observed

Conclusions

- Search for massive fourth generation up-type quarks
- Likelihood fit to 2D distribution
 - Total transverse energy of the event
 - Reconstructed mass of the top-like object
- Exclude t' masses up to 284 GeV/c²
- Sensitive to excess data in the tails of the distribution
- No significant excess observed
- More details http://www-cdf.fnal.gov/physics/new/top/2008/tprop/Tprime2.3/public.html