Direct Searches for New Physics at NuSOnG

Georgia Karagiorgi, Columbia University

PHENO 2008 – April 28-30, 2008 Madison, Wisconsin

Outline

- 1. Neutrino properties
- 2. New physics and possible signatures in the neutrino sector
- 3. The NuSOnG experiment
- 4. Direct searches for new physics at NuSOnG
 - New interactions
 - New particles
 - New mixing properties

Neutrino properties

What we know

- non-zero masses
- 3 active (SM) flavors: electron, muon, tau
- mixing
- interact through weak force and gravity

What we don't know

- absolute masses?
- any other 'flavors'?
- θ₁₃=0? θ₂₃ maximal?
 CP violation?
- any other interactions?

New physics and how they manifest in the neutrino sector

- 1. Are there <u>new interactions</u> in the neutrino sector? Signature: rare neutrino events
- 2. Are there <u>new particles</u>? Signature: characterístic decay modes
- 3. Is there new physics (sterile neutrinos, non-standard interactions, etc.) that could manifest through <u>modifications to neutrino mixing</u>? Signature: instantaneous flavor transitions, etc.

NuSOnG [Neutrino Scattering On Glass]

... is a high statistics, high-energy neutrino scattering experiment proposed to run at the Fermilab Tevatron

NuSOnG will use 800 GeV protons from Fermilab's Tevatron

Mean neutrino energy ~100 GeV

High-energy, very flavor-pure (muon) neutrino beam

Well-segmented, massive detector

6 × mass of CHARM

High-energy, because we'd like to use IMD events to constrain our flux prediction

High Statistics & High Precision...

600M	v_{μ} CC Deep Inelastic Scattering
190M	v_{μ} NC Deep Inelastic Scattering
75k	v_{μ} electron NC elastic scatters
700k	v_{μ} electron CC quasielastic scatters (IMD)
33M	\bar{v}_{μ} CC Deep Inelastic Scattering
12M	\bar{v}_{μ} NC Deep Inelastic Scattering
7k	\bar{v}_{μ} electron NC elastic scatters
Ok	\bar{v}_{μ} electron CC quasielastic scatters

Rates assume: 1.5E20 POT in neutrino mode 0.5E20 POT in anti-neutrino mode.

NuSOnG will study these interactions to better than 1% precision!

... allows for a lot of new physics search opportunities!

arXiv: 0803.0354 v2 [hep-ph] Article submitted to Phys. Rev. D

Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

T. Adams⁵, P. Batra³, L. Bugel³, L. Camilleri³, J.M. Conrad³, A. de Gouvêa¹¹, P.H. Fisher⁸, J.A. Formaggio⁸, J. Jenkins¹¹, G. Karagiorgi³, T.R. Kobilarcik⁴, S. Kopp¹⁵, G. Kyle¹⁰, W.A. Loinaz¹, D.A. Mason⁴, R. Milner⁸, R. Moore⁴, J. G. Morfín⁴, M. Nakamura⁹, D. Naples¹², P. Nienaber¹³, F.I Olness¹⁴, J.F. Owens⁵, S.F. Pate¹⁰, A. Pronin¹⁶, W.G. Seligman³, M.H. Shaevitz³, H. Schellman¹¹, I. Schienbein⁷, M.J. Syphers⁴, T.M.P. Tait^{2,11}, T. Takeuchi¹⁶, C.Y. Tan⁴, R.G. Van de Water⁶, R.K. Yamamoto⁸, J.Y. Yu¹⁴

Direct Searches for New Physics

1. New interactions – manifested through rare events

The combination of a high-intensity and high-purity beam and an instrumented detector, optimized to measure IMD with high-accuracy makes NuSOnG ideal for searching for:

Wrong Sign IMD ($\Delta L_e = -\Delta L_\mu = 2$) $\bar{\nu}_\mu + e^- \rightarrow \mu^- + \bar{\nu}_e$...this is forbidden in the SM!

Best limits (90%CL) are from NuTeV [PRL 87:071803, 2001]

1.7% on V-A couplings0.6% on the scalar coupling

0.6% on V-A 0.2% on scalar

2. New particles – A direct search for "neutrissimos"

Filling the 15 m region between subdetectors with helium and looking for neutrissimo decays...

Searches for axion-like particles, dilaton-like particles, light vector bosons, light inflatons, light radions, etc., are also possible.

3. New light neutrino properties – Mixing freedom

Mixing freedom arises when the 3x3 neutrino mixing matrix is non-unitary

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \qquad \sum_{j} |U_{\alpha j}|^2 = 1 - X_a$$

Underlying physics:

- sterile neutrinos
- flavor-dependent neutrino couplings
- new particles
- *etc.*

Modifications to standard oscillation probabilities:

Disappearance:

Appearance has the same effect!

At L=0 there will be an instantaneous transition between neutrino species!

• Look for an excess of v_e's in a range not expected

To see instantaneous $v_{\mu} \rightarrow v_{e}$ look for an increase in v_{e} rate at $E_{v} \sim 350$ GeV

NuSOnG's reach: 10⁻⁵ level

Look for "wrong sign" IMD

If
$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$
, then $\overline{\nu}_{e} + e^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}$
... same signature as WSIMD!

Georgia Karagiorgi

• Look for increase in v_u NC scattering rate

NuSOnG's reach: 10⁻³ level

Seeing all 3 effects would be a striking signature!

Conclusions

With a very pure, high-flux and high-energy neutrino beam one can directly search for new physics in the neutrino sector in unique ways.

Our proposed experiment, NuSOnG, is an ideal tool for such searches.

