### The Terascale Physics Reach of NuSOnG

William Loinaz for NuSOnG

Amherst College

Pheno 2008, Madison WI



#### <u>Outline</u>

- Impressive INDIRECT new physics reach of NuSOnG
  - model-independent analysis
  - consider specific models
- Plays well with others (LHC)

**References** 

- arXiv:0803.0354 (accepted by PRD)

*Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG* 

- NuSOnG EoI: http://www-nusong.fnal.gov



Physics in this talk assumes 1.5E20 POT in  $\nu$ , 0.5E20 POT in  $\nu$ 

3

# NuSOnG will measure... $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$ ES $\bar{\nu}_{\mu} + e^- \rightarrow \bar{\nu}_{\mu} + e^ \nu_{\mu} + q \rightarrow \nu_{\mu} + X$ DIS $\bar{\nu}_{\mu} + q \rightarrow \bar{\nu}_{\mu} + X$ $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$ IMD

...with high precision. target: 
 neutrino ES/IMD at 0.7%
 cut NuTeV errors in half

4

#### Very high statistics! $v_{\mu}$ CC Deep Inelastic Scattering 600M 190M $v_{\mu}$ NC Deep Inelastic Scattering $v_{\mu}$ electron NC elastic scatters 75k 700k $v_{\mu}$ electron CC quasielastic scatters (IMD) $\bar{v}_{\mu}$ CC Deep Inelastic Scattering 33M $\bar{v}_{\mu}$ NC Deep Inelastic Scattering 12M $\bar{v}_{\mu}$ electron NC elastic scatters 7k $\bar{v}_{\mu}$ electron CC quasielastic scatters 0k A unique opportunity for these channels! μ- $\nu_{\mu}$ $\nu_{\mu}$ $\nu_{\mu}$ Ζ W e<sup>-</sup> e e Ve 5

SM: simple expressions in terms of a few parameters  $[\rho, \sin^2\theta_{\rm W} \text{ are predicted by precision EW data}]$ 
$$\begin{split} \sigma(\nu_{\mu}e) &= \; \frac{G_F^2 m_e E_{\nu}}{2\pi} \, \rho^2 \Bigg[ 1 - 4 \sin^2 \theta_W + \frac{16}{3} \sin^4 \theta_W \Bigg] \; , \\ \sigma(\bar{\nu}_{\mu}e) &= \; \frac{G_F^2 m_e E_{\nu}}{2\pi} \, \frac{\rho^2}{3} \Bigg[ 1 - 4 \sin^2 \theta_W + 16 \sin^4 \theta_W \Bigg] \; , \end{split}$$
ES leptonic: very clean SM physics,  $\frac{d\sigma_{\rm IMD}}{dy} = \frac{G_F^2(s - m_{\mu}^2)}{\pi (1 - q^2/M_{\rm TM}^2)^2}$ but lower IMD statistics DIS: hadron / nuclear more complex, but more events  $g_{\rm L}^2$  and  $g_{\rm R}^2$  are effective L and R vq couplings 6

before jumping into NP...

## NuTeV anomaly: new physics or old physics?

NuTeV (neutrino DIS) finds  $\sin^2\theta_W 2.7\sigma$  above predictions



Many issues must be addressed by neutrino expts

- SM explanations
  - strange sea asymmetry
  - radiative corrections
  - isospin asymmetry
- BSM explanations

[Updated NuTeV analysis this summer]

NuSOnGwill help clarify- will cut NuTeV errors in half<br/>for (anti-)v-q scattering- can measure  $sin^2\theta_W$  in both ve<br/>and vq channels7

# $sin^2\theta_W$ at NuSOnG

#### Measurements using both neutrino-electron and neutrino quark scattering techniques

| Source                                 | NuTeV<br>Error | Method of reduction in NuSOnG                                                                                                                                                                                                   |
|----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistics                             | 0.00135        | Higher statistics                                                                                                                                                                                                               |
| $ u_e,  \bar{\nu}_e $ flux prediction  | 0.00039        | Improves in-situ measurement of $\bar{\nu}_e$ CC scatters, thereby constraining prediction due to better lateral segmentation and transverse detection. Also, improved beam design to further reduce $\bar{\nu}_e$ from $K^0$ . |
| Interaction vertex position            | 0.00030        | Better lateral segmentation.                                                                                                                                                                                                    |
| Shower length model                    | 0.00027        | Better lateral segmentation and transverse detection<br>will allow more sophisticated shower identification model.                                                                                                              |
| Counter efficiency and noise           | 0.00023        | Segmented scintillator strips of the type                                                                                                                                                                                       |
|                                        |                | developed by MINOS will improve this.                                                                                                                                                                                           |
| Energy Measurement                     | 0.00018        | Better lateral segmentation.                                                                                                                                                                                                    |
| Charm production, strange sea          | 0.00047        | In-situ measurement.                                                                                                                                                                                                            |
| R <sub>L</sub>                         | 0.00032        | In-situ measurement.                                                                                                                                                                                                            |
| $\sigma^{\overline{\nu}}/\sigma^{\nu}$ | 0.00022        | Likely to be at a similar level.                                                                                                                                                                                                |
| Higher Twist                           | 0.00014        | Recent results reduce this error.                                                                                                                                                                                               |
| Radiative Corrections                  | 0.00011        | New analysis underway, see text below.                                                                                                                                                                                          |
| Charm Sea                              | 0.00010        | Measured in-situ using wrong-sign muon production in DIS.                                                                                                                                                                       |
| Non-isoscalar target                   | 0.00005        | Glass is isoscalar                                                                                                                                                                                                              |

NuSOnG (self-consistently) addresses SM physics issues to search for new physics

# Looking for new physics (indirectly)

a few (quasi) model-independent approaches ..

- Oblique Corrections
- Neutrino-lepton NSIs
- Neutrino-quark NSIs
- Modified neutrino-gauge boson couplings Nonuniversal couplings Right-handed coupling to the Z
- ... "generic ways" that new physics might show up
- ... then look at some specific models







#### Non-standard interactions (NSI)

NC effective Lagrangian of SM:

$$\mathcal{L} = -2\sqrt{2}G_F \left[ \bar{\nu}\gamma_{\mu}P_L\nu \right] \left[ g_L^{\nu f} \bar{f}\gamma^{\mu}P_Lf + g_R^{\nu f} \bar{f}\gamma^{\mu}P_Rf \right]$$

$$g_L^{\nu f} = 2g_L^{\nu}g_L^f = \rho \left( I_3^f - Q^f \sin^2 \theta_W \right)$$
rametrize new physics of
$$g_R^{\nu f} = 2g_L^{\nu}g_R^f = \rho \left( -Q^f \sin^2 \theta_W \right)$$

Parametrize new physics of neutrino-fermion interactions with four-fermion effective operators:

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \left[ \bar{\nu}_{\alpha}\gamma_{\sigma}P_L\nu_{\beta} \right] \left[ \varepsilon_{\alpha\beta}^{fL}\bar{f}\gamma^{\sigma}P_Lf + \varepsilon_{\alpha\beta}^{fR}\bar{f}\gamma^{\sigma}P_Rf \right]$$

For  $\alpha = \beta$  the  $\varepsilon$  simply shift effective couplings, so  $g_L^{\nu f} \longrightarrow \tilde{g}_L^{\nu f} = g_L^{\nu f} + \varepsilon_{\mu\mu}^{fL}$ uncertainty in g corresponds  $g_R^{\nu f} \longrightarrow \tilde{g}_R^{\nu f} = g_R^{\nu f} + \varepsilon_{\mu\mu}^{fR}$ to uncertainty in  $\varepsilon$ 

[similar framework for CC corrections]



Competitive with E158 (Moller scattering)

$$\mathcal{L}_{
m new} = \pm rac{4\pi}{2\Lambda_{LL}^{\pm 2}} \left( ar{e}_L \gamma_\mu e_L 
ight) \left( ar{e}_L \gamma^\mu e_L 
ight) \, .$$
  
 $\Lambda_{LL}^+ \ge 7 \, {
m TeV} \, , \qquad \Lambda_{LL}^- \ge 16 \, {
m TeV} \, .$ 

[E158 only sensitive to parity-violating physics, unlike NuSOnG]

... and LEP2 
$$\mathcal{L} = \pm \frac{4\pi}{\Lambda_{eP}^{\pm 2}} (\bar{e}_P \gamma_\sigma e_P) (\bar{\mu}_L \gamma^\sigma \mu_L) , \qquad P = L, R.$$

|        | $\Lambda^{eL}$ | $\Lambda^+_{eL}$ | $\Lambda^{eR}$ | $\Lambda^+_{eR}$ |
|--------|----------------|------------------|----------------|------------------|
| L3     | 3.8 TeV        | $8.5 { m TeV}$   | 2.0 TeV        | $6.5 { m TeV}$   |
| OPAL   | $7.3 { m TeV}$ | $8.1 { m TeV}$   | $6.3 { m TeV}$ | $6.3~{ m TeV}$   |
| DELPHI | $7.6 { m TeV}$ | $7.3~{ m TeV}$   | $2.0 { m TeV}$ | $6.3~{ m TeV}$   |
| ALEPH  | $9.5 { m TeV}$ | $6.6~{ m TeV}$   | $2.0 { m TeV}$ | $6.1 { m TeV}$   |

| <u>What</u>                                                                                                                                                                                                                                                                             | about neutrino-quark NSI's ?           | $v_{\mu}$ $v_{\mu}$                                                                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|--|--|
| NC: $\mathcal{L}_{\text{NSI}} = (\bar{\nu}_{\alpha L} \gamma_{\alpha} \nu_{\mu L}) \left[ \frac{4\pi}{\Lambda_{qL}^2} \bar{q}_L \gamma^{\alpha} q_L + \frac{4\pi}{\Lambda_{qR}^2} \bar{q}_R \gamma^{\alpha} q_R \right]$<br>We consider only the flavor conserving case, $\alpha = \mu$ |                                        |                                                                                      |  |  |
| Sensitivity ranges from $\Lambda \sim 9$ to 21 TeV                                                                                                                                                                                                                                      |                                        |                                                                                      |  |  |
| coupling                                                                                                                                                                                                                                                                                | g: present Nus<br>constraint (TeV) imp | SOnG factor<br>provement                                                             |  |  |
| uL                                                                                                                                                                                                                                                                                      | < 14                                   | × 1.4                                                                                |  |  |
| dL                                                                                                                                                                                                                                                                                      | < 15.5                                 | × 1.4                                                                                |  |  |
| uR                                                                                                                                                                                                                                                                                      | < 10.5                                 | ×1.35                                                                                |  |  |
| dR                                                                                                                                                                                                                                                                                      | < 7                                    | ×1.35 [careful: if corresponding<br>CC NSI exists, had better<br>be included!]<br>16 |  |  |

#### <u>Modify neutrino-</u> <u>gauge boson couplings</u>

SM singlet fermions with mass >  $M_Z/2$  (neutrissimos). Sterile states mix with active neutrinos, suppress gauge couplings



0.02

0.01

 $g_R^2$ 

NC and CC corrections from neutrino-neutrissmo mixing

[possible solution to NuTeV anomaly]

present g<sup>2</sup><sub>L</sub>

1

... and when combined with projected improvements in  $\tau$  branching ratios (from BaBar) and  $\pi$  decay (from PINUE) the constraints become even stronger.



#### Modified Gauge Couplings:

Probing right handed couplings of the neutrino to the Z



#### NuSOnG in the Context of Specific "Typical" Models

| Model                                                    | Contribution of NuSOnG Measurement                                  |
|----------------------------------------------------------|---------------------------------------------------------------------|
| Typical Z' Choices: $(B - xL), (q - xu), (d + xu)$       | At the level of, and complementary to, LEP II bounds.               |
| Extended Higgs Sector                                    | At the level of, and complementary to $\tau$ decay bounds.          |
| R-parity Violating SUSY                                  | Sensitivity to masses $\sim 2$ TeV at 95% CL.                       |
|                                                          | Improves bounds on slepton couplings by $\sim 30\%$ and             |
|                                                          | on some squark couplings by factors of 3-5.                         |
| Intergenerational Leptoquarks with non-degenerate masses | Accesses unique combinations of couplings.                          |
|                                                          | Also accesses coupling combinations explored by $\pi$ decay bounds, |
|                                                          | at a similar level.                                                 |

TABLE VI: Summary of NuSOnG's contribution in the case of specific models

Models imply relations among four-fermion operators (may affect both CC and NC)

Again, typical (M/g) reach is 1 to 5 TeV, depending on the model



### Heavy Z' Models

Four examples of types of couplings...

|                    | $U(1)_{B-xL}$ | $U(1)_{q+xu}$ | $U(1)_{10+x5}$ | $U(1)_{d-xu}$ |
|--------------------|---------------|---------------|----------------|---------------|
| $\nu_{\mu L}, e_L$ | -x            | $^{-1}$       | x/3            | (-1+x)/3      |
| $e_R$              | -x            | -(2+x)/3      | -1/3           | x/3           |

Reach extends to many TeV, depending on the U(1)' symmetry.



|                                 | R-pa             | rity Violating SU                  | SY |                   |
|---------------------------------|------------------|------------------------------------|----|-------------------|
| Coupling                        | 95% NuSOnG bound | current 95% bound                  |    | 200% to 100%      |
| $ \lambda_{121} $               | 0.03             | $0.05 (V_{ud})$                    |    | 20 /0 10 40 /0    |
| $ \lambda_{122} $               | 0.04             | $0.05 (V_{ud})$                    | ļ  | improvements      |
| $\lambda_{123}$                 | 0.04             | $0.05 (V_{ud})$                    | J  | onIIF             |
| A231                            | 0.05             | $0.07 (\tau \text{ decay})$        |    |                   |
| $\lambda'_{211}$                | 0.05             | $0.06 \ (\pi \text{ decay})$       |    | Eastors of 2 to 5 |
| 1/212<br>1/212                  | 0.06             | $0.06 \ (\pi \text{ decay})$       |    | racions of 5 to 3 |
| $\lambda_{213} = \lambda_{221}$ | 0.07             | 0.21 (D  meson decay)              | Ĵ  | improvement!      |
| $\lambda'_{231}$                | 0.07             | $0.45 (Z \rightarrow \mu^+ \mu^-)$ | ſ  | onLOD             |
|                                 |                  |                                    | -  | UII LQD 21        |



#### NuSOnG + LHC: TeV-scale leptoquarks

non-degenerate 0.5-1.5 TeV  $SU(2)_L$  triplet leptoquark



<u>LHC</u> gives mass measurement, but little info on coupling

NuSOnG

- ve,  $g_R^2$  agree with LEP
- $g_L^2$  agrees with NuTeV

combination of  $g_L^2$  and leptoquark mass will constrain couplings



#### <u>Summary</u>

NuSong can

- constrain new physics at the TeV scale
- complement LHC and other experiments
- probe solutions to NuTeV
- make important QCD measurements
- perform direct searches for new physics

# <u>NuSOnG + LHC: A Chiral 4th Generation Family</u>

Т

## LHC:

- Highly enhanced  $H \rightarrow ZZ$
- The Higgs mass, lets say 300 GeV
- complex decay modes (e.g. 6W's and 2 b's)

#### And what it doesn't...

- Measure mass of new quarks
- Observe new charged leptons (off mass shell Drell-Yan produced)
- Reconstruct the decay modes fully

### NuSOnG:

QCD explanation for NuTeV is found, allowing NuTeV to be corrected



#### A Chiral 4th generation ( $\Delta$ S=0.2) with isospin violation ( $\Delta$ T=0.2)

(Four Generations and Higgs Physics, hep-ph/0706.3718 G. D. Kribs, Y. Plehn, M. Spannowsky, T.M.P. Tait)