### Coherent NC π<sup>0</sup> Production in the MiniBooNE Antineutrino Data

#### Van Nguyen Columbia University for the MiniBooNE collaboration

**PHENO 2008** 

1



- NC  $\pi^0$  production
- Motivation
- Analysis
- Preliminary results
- Summary

### NC $\pi^0$ Production

At low energy, NC  $\pi^0$ 's can be created through resonant and coherent production:

Resonant NC π<sup>0</sup> production:



 Coherent NC π<sup>0</sup> production: (Signature: π<sup>0</sup> which is highly forward–going)

#### 4

# Why study coherent NC $\pi^0$ production?

- NC  $\pi^0$  events are the dominant background to  $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}} (\nu_{\mu} \rightarrow \nu_{e})$ oscillation searches
- In particular, coherent production is → much more challenging to predict theoretically than resonant processes at these energies (<2 GeV)
- Furthermore, there are few → experimental measurements, with none at very low energy
- The analysis in this talk represents → the first time we are probing this region experimentally



## NC $\pi^{0}$ 's in MiniBooNE

- MiniBooNE, an expt at Fermilab designed to measure ν oscillations, turns out to be very well-suited for π<sup>0</sup> physics
- Large, open-volume Čerenkov detector with full angular coverage is really good at π<sup>0</sup> ID and containment
- MiniBooNE has the world's largest samples of NC π<sup>0</sup> events in interactions with ~1 GeV neutrinos (over 28k)\* and with ~1 GeV antineutrinos (over 1.7k)\*





\*additional antineutrino data being collected

#### Cos $\theta$ and Coherent $\pi^0$ Production

Coherent and resonant production are distinguishable by  $\cos\theta_{\pi}$ , which is the cosine of the lab angle of the outgoing  $\pi^{0}$  wrt to the beam direction.



We can use this fact to extract a measure of the coherent fraction.

#### Study Coherent $\pi^{0}$ 's in Terms of $E_{\pi}(1-\cos\theta_{\pi})$



In coherent events,  $E_{\pi}(1-\cos\theta_{\pi})$  has a more regular shape, as a function of momentum, than  $\cos\theta_{\pi}$  alone, so we'll fit for the coherent content as a function of this energy weighted angular distribution.

### Study Coherent $\pi^{0}$ 's in terms of $E_{\pi}(1-\cos\theta_{\pi})$



Meanwhile the resonant distributions can have a large variation in this energy range.

# Coherent NC $\pi^0$ 's in v vs. $\overline{v}$ Running



Generated  $\pi^0$  angular distribution for NC  $\nu$  (left) and  $\overline{\nu}$ (right) scattering.

### Preliminary Nubar Coherent Fit Results

- MiniBooNE clearly sees evidence for coherent NC π<sup>0</sup> production in both neutrino and antineutrino modes at a rate that is ~1.5x lower than the R-S model prediction, which is the most widely used model in v expts
- Antineutrino mode fit results are shown below





 MiniBooNE has amassed the world's largest samples of NC π<sup>0</sup> events in interactions with ~1 GeV (anti)neutrinos and sees strong evidence for coherent production in both modes, where the search in antineutrino mode is the first of its kind at low energy (< 2 GeV)</li>