Minimal $\beta\beta0\nu$ Rates From Approximate Flavor Symmetries A survey of broken $U(1)_f$ model space and induced m_{ee}

James Jenkins

Department of Physics and Astronomy Northwestern University

PHENO 2008, Madison

James Jenkins Minimal $\beta\beta 0\nu$ Rates From Approximate Flavor Symmetries

イロト イポト イヨト イヨト

Outline

Introduction

- Neutrinoless Double β -Decay ($\beta\beta 0\nu$)
- 2 Flavor Symmetries and Vanishing $\Gamma_{etaeta 0
 u}$
 - Unbroken U(1)_f Symmetry
 - Spurion Analysis
 - Predictions

Concluding Thoughts

- Evading Bounds
- Summary

(日本) (日本) (日本)

Introduction

Flavor Symmetries and Vanishing $\Gamma_{\beta\beta0\nu}$ Concluding Thoughts

Neutrinoless Double β -Decay ($\beta\beta$ 0 ν)

Neutrinoless Double Beta Decay

The standard, high sensitivity probe of LNV and Majorana neutrino masses

Standard picture: small $m_{ee}^{eff} = m_{ee}$ can arise in the normal hierarchy via cancellations among mixing angles and phases.

With new physics, other nontrivial cancellations are possible, but induce a feedback mechanism!

Introduction

Flavor Symmetries and Vanishing $\Gamma_{\beta\beta0\nu}$ Concluding Thoughts

Majorana Neutrinos and Lepton Number Violation The Black Box and extended Black Box theorems

Extended Black Box Theorem: Assuming 3 ν mixing & arbitrary LNV, $m_{ee} = 0$ is *not* consistent with oscillation data!

Hirsch, Kovalenko & Schmidt 200

→ E → < E →</p>

Introduction

Flavor Symmetries and Vanishing $\Gamma_{\beta\beta0\nu}$ Concluding Thoughts

Majorana Neutrinos and Lepton Number Violation The Black Box and extended Black Box theorems

- Black Box Theorem Schechter & Valle, 1982
 - LNV operators yield Majorana neutrino mass
 - Majorana neutrino mass yields effective LNV operators

프 에 에 프 어

$$m_{ee}^{eff} = \sum_{i} (\mathcal{O}_{i} + m_{ee}^{\mathcal{O}_{i}})$$

Exact cancelations are possible
but require fine tuning

Extended Black Box Theorem: Assuming 3 ν mixing & arbitrary LNV, $m_{ee} = 0$ is *not* consistent with oscillation data!

Hirsch, Kovalenko & Schmidt 2006

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Flavor Symmetries and Vanishing } \Gamma_{\beta\beta0\nu}\\ \mbox{Concluding Thoughts} \end{array}$

Unbroken U(1)_f Symmetry Spurion Analysis Predictions

Abelian Flavor Symmetries

Exact $m_{ee} = 0$ is stabilized by an appropriate flavor symmetry...

Assume 3 *light* Majorana neutrino states charged under global $U(1)_f$ as n_e , n_μ and n_τ

$$\mathcal{L} \supset M\frac{1}{2} \left(\overline{\nu_{e}^{c}}, \overline{\nu_{\mu}^{c}}, \overline{\nu_{\tau}^{c}} \right) \begin{pmatrix} a_{ee}\delta_{2n_{e},0} & a_{e\mu}\delta_{n_{e}+n_{\mu},0} & a_{e\tau}\delta_{n_{e}+n_{\tau},0} \\ a_{e\mu}\delta_{n_{e}+\nu_{\mu},0} & a_{\mu\mu}\delta_{2n_{\mu},0} & a_{\mu\tau}\delta_{n_{\mu}+n_{\tau},0} \\ a_{e\tau}\delta_{n_{e}+n_{\tau},0} & a_{\mu\tau}\delta_{n_{\mu}+n_{\tau},0} & a_{\tau\tau}\delta_{2n_{\tau},0} \end{pmatrix} \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

Charged ν_e forbids a $\overline{\nu_e^c} \nu_e$ mass term & implies vanishing $\Gamma_{\beta\beta0\nu}$

What about extensions to non-abelian symmetries?

- Correlated quantum numbers defined by representations
- Reduced number of $a_{\alpha\beta}$ constants to tweak

Therefore U(1) provides the most freedom for minimizing m_{ee}

STERN

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

Texture Classes and Predictions

Class	Charge	Matrix	Predictions	Class	Charge	Matrix	Predictions
1	$(n_{e}, 0, 0)$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{\mu\mu} & a_{\mu\tau} \\ 0 & a_{\mu\tau} & a_{\tau\tau} \end{pmatrix}$	$\begin{array}{l} s_{12}=0,\ s_{13}=0 \;(\text{Normal Hierarchy})\\ s_{12}=0,\ s_{23}=0 \;(\text{Inverted Hierarchy})\\ \text{Can tune } \Delta^2 m \text{'s to fit data} \end{array}$	7	$(n_e, 0, -n_e)$	$\begin{pmatrix} 0 & 0 & a_{e\tau} \\ 0 & a_{\mu\mu} & 0 \\ a_{e\tau} & 0 & 0 \end{pmatrix}$	$\begin{split} \Delta^2 m_{sol} &= 0, \Delta^2 m_{atm} = a_{\tau\tau}^2 - a_{e\mu}^2 \\ \theta_{13} &= \pi/4, \theta_{23} = 0, \theta_{12} = 0 \end{split}$
2	$(n_e,n_\mu,-n_\mu)$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a_{\mu\tau} \\ 0 & a_{\mu\tau} & 0 \end{pmatrix}$	$\begin{split} &\Delta^2 m_{sol} = 0, \ \Delta^2 m_{atm} = a_{\mu\tau}^2 \\ &s_{13} = 1/\sqrt{2}, \ t_{23} = 0, \ t_{12} = 0 \\ &\text{Inverted hierarchy} \end{split}$	8	$(n_e, -n_e, 0)$	$\begin{pmatrix} 0 & a_{e\mu} & 0 \\ a_{e\mu} & 0 & 0 \\ 0 & 0 & a_{\tau\tau} \end{pmatrix}$	$\begin{array}{l} \Delta^2 m_{sol} = 0, \Delta^2 m_{atm} = a_{\tau\tau}^2 - a_{e\mu}^2 \\ \theta_{13} = 0, \; \theta_{23} = 0, \; \theta_{12} = \pi/4 \end{array}$
3	$(n_e, 0, n_\tau)$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{\mu\mu} & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{split} \Delta^2 m_{sol} &= 0, \ \Delta^2 m_{atm} = a_{\mu\mu}^2 \\ s_{13} &= \sin \theta, \ t_{23} = \cos \theta, \ t_{12} = 0 \\ \text{Normal hierarchy}, \end{split}$	9	$(n_e, -n_e, -n_e)$	$\begin{pmatrix} 0 & a_{e\mu} & a_{e\tau} \\ a_{e\mu} & 0 & 0 \\ a_{e\tau} & 0 & 0 \end{pmatrix}$	$\begin{split} \Delta^2 m_{sol} = 0, \ \Delta^2 m_{atm} = a_{e\tau}^2 + a_{e\mu}^2 \\ s_{13}^2 = \frac{a_{e\tau}^2}{2(a_{e\mu}^2 + a_{e\tau}^2)}, \ t_{23}^2 = \frac{a_{e\tau}^2}{2a_{e\mu}^2}, \ t_{12}^2 = \frac{a_{e\mu}^2}{2(a_{e\mu}^2 + a_{e\tau}^2)} \\ m_{e\mu} = \frac{a_{e\mu}^2}{2(a_{e\mu}^2 + a_{e\tau}^2)}, \ t_{23} = \frac{a_{e\mu}^2}{2a_{e\mu}^2}, \ t_{24} = \frac{a_{e\mu}^2}{2(a_{e\mu}^2 + a_{e\tau}^2)} \end{split}$
4	$(n_e, n_{\mu}, 0)$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a_{\tau\tau} \end{pmatrix}$	$\Delta^2 m_{sol} = 0, \ \Delta^2 m_{atm} = a_{\tau\tau}^2$ $s_{13} = 0, \ t_{23} = 0, \ t_{12} = \tan \theta$ Normal hierarchy	10	$(n_e, -n_e, n_\tau)$	$\begin{pmatrix} 0 & a_{e\mu} & 0 \\ a_{e\mu} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\Delta^2 m_{sol} = 0, \ \Delta^2 m_{atm} = a_{e\mu}^2$ $s_{13} = 0, \ t_{23} = 0, \ t_{12} = 1$ Inverted hierarchy
5	$(n_e, n_e, -n_e)$	$\begin{pmatrix} 0 & 0 & a_{e\tau} \\ 0 & 0 & a_{\mu\tau} \\ a_{e\tau} & a_{\mu\tau} & 0 \end{pmatrix}$	$\Delta^* m_{sol} = 0, \Delta^* m_{atm} = a_{e\tau}^* + a_{\mu\tau}^*$ $s_{13} = 1/\sqrt{2}, t_{23} = 0, t_{12} = a_{\mu\tau}/a_{e\tau}$ Inverted hierarchy	11	$(n_e, n_\mu, -n_e)$	$\begin{pmatrix} 0 & 0 & a_{e\tau} \\ 0 & 0 & 0 \\ a_{e\tau} & 0 & 0 \end{pmatrix}$	$\Delta^2 m_{sol} = 0, \ \Delta^2 m_{atm} = a_{e\tau}^2$ $s_{13} = 1/\sqrt{2}, \ t_{23} = 0, \ t_{12} = 0$ Inverted hierarchy
6	$(n_e, -n_e, n_e)$	$\begin{pmatrix} 0 & a_{e\mu} & 0 \\ a_{e\mu} & 0 & a_{\mu\tau} \\ 0 & a_{\mu\tau} & 0 \end{pmatrix}$	$\Delta^{-}m_{sol} = 0, \Delta^{-}m_{atm} = a_{\mu\tau}^{-} + a_{e\mu}^{-}$ $s_{13}^{2} = \frac{a_{\mu\tau}^{2}}{2(a_{\mu\mu}^{2} + a_{\mu\tau}^{2})}, t_{23}^{2} = a_{\mu\tau}^{2}/2a_{e\mu}^{2}, t_{12}^{2} = \frac{a_{e\mu}^{2} + a_{\mu\tau}^{2}}{a_{e\mu}^{2}}$ Inverted hierarchy, $s_{13} = t_{23}/t_{12}$		1	\	

11 discrete texture classes... None accommodate mixing data! Majorana ν + Oscillations $\implies \Gamma_{\beta\beta0\nu} \neq 0$

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

Symmetry Breaking The general idea

Expect that small m_{ee} values are induced by associated small breakings of $U(1)_f$ symmetry

Introduce new spurious scalar s with charge n_s

- Write all relevant Lagrangian terms to given order
- Give s small VEV e (breaks symmetry!)
- Solution Fit ϵ , *M* & $a_{\alpha\beta}$ parameters to oscillation data
- Search for smallest allowed mee
- Extract other predictions
- O this for all nontrivial breaking patterns to given order

This results in only 230 textures divided into 11 classes!

イロト イポト イヨト イヨト

UNIVERSITY

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

Symmetry Breaking Some more details

$$m_{lphaeta} = M imes a_{lphaeta} imes \epsilon^{\left|rac{n_{lpha}+n_{eta}}{n_{m{s}}}
ight|}$$

$$imes \delta_{\mathrm{mod}(\mathbf{n}_{lpha}+\mathbf{n}_{eta},\mathbf{n}_{\mathbf{s}}),\mathbf{0}}$$

- $a_{\alpha\beta}$ provides parameter tuning
 - Sets naturalness criterion
 - Set *a_{ee}* = 1 (rescaling freedom)
 - Others fluctuate near 1
 - Parameterize range by C
 - C = 0.5: order of magnitude!

$$10^{-C} \leq |a_{\alpha\beta}| \leq 10^{C}$$

• ϵ yields texture structure

•
$$\epsilon < 2/3$$

• smallest $\epsilon \nleftrightarrow$ smallest m_{ee}

Fitting the mixing data requires a complex interplay between M, ϵ and $a_{\alpha\beta}!$

イロト イポト イヨト イヨト

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

m_{ee} Distribution: C = 0.1

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

m_{ee} Distribution: C = 0.3

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

m_{ee} Distribution: C = 0.5

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

m_{ee} Distribution: C = 0.7

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

m_{ee} Distribution: C = 0.7 (Reduced Uncertainty)

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

C = 0.5 Oscillation Parameter Scatter Plots

Unbroken *U*(1)_f Symmetry Spurion Analysis Predictions

C = 0.5 Kinematic Scatter Plots

Evading Bounds Summary

$\beta\beta$ 0 ν With Light Sterile Neutrinos Example for 3 + 2 + 1 See Saw case:

Many reasonable (and mostly testable) assumptions are employed in this analysis... Bounds may be evaded!

The observation **or** non-observation of $\beta\beta$ 0 ν reveals much about potential new physics !

James Jenkins

Minimal $\beta\beta$ 0 ν Rates From Approximate Flavor Symmetries

Evading E 80v Summary

Summary

While exact $\Gamma_{\beta\beta0\nu} = 0$ *cannot* be protected by flavor symmetries small m_{ee} values may be obtained from small breakings.

I scan the model space of broken $U(1)_f$ in search of small m_{ee}

- *m_{ee}* as small as 10⁻⁹ eV are still allowed
- Future measurements will increase these limits
 - Neutrino mass hierarchy
 - Oscillation parameters
 - m_{ν} and Σ
- May be evaded by new light states or unnatural couplings

Combining information from $\beta\beta0\nu$, oscillation searches and other probes can reveal much about the nature of new physics.

イロト イポト イヨト イヨト

UNIVERSITY