Phenomenology of the Standard Model in two extra dimensions

A. Freitas University of Pittsburgh

- 1. Introduction to the model
- 2. Phenomenology at hadron colliders
- 3. Phenomenology at lepton colliders
- 4. Constraints from flavor physics

Each gauge boson has **six** components A_{μ} , $\mu = 0, ..., 5$

Compactification leads to a tower of 4-component vector bosons $A_{\nu}^{(j,k)}, \nu = 0, ..., 3$

One component gets eaten to give mass (a longitudinal component) to the KK-vectors

The remaining component forms a new scalar particle A_H

Burdman, Ponton, Dobrescu '05

Sides are

 $L = \pi R$

XΛ

identified

Mass spectrum

Cheng, Matchev, Schmaltz '02 Ponton, Wang '05

Masses of each KK-level: $M_{(j,k)}^2 = (j^2 + k^2)/R^2$

Radiative corrections generate localized operators that lift degeneracy within one KK-level

General form: $\delta M^2_{(j,k)} = const. \times \frac{g^2}{16\pi^2} \log \frac{\Lambda^2}{M^2_{(j,k)}}$

 Λ is a cut-off energy scale

Estimate $\Lambda \approx 10/R$ (couplings become strong)

KK number broken, but **KK parity** preserved

Decays

Due to conservation of K-parity, the **lightest K-odd particle is stable** Typically the scalar component of the hypercharge gauge boson $B_H^{(1,0)}$

 \rightarrow Good **DM candidate** for $R^{-1} \lesssim 600$ GeV Dobrescu, Hooper, Kong, Mahbubani '07

All other level (1,0) particles decay into $B_H^{(1,0)}$

Decay channels with hadrons often dominant

KK-Leptons and KK-Wbosons have large decay fractions with leptons

$$B^{(1,0)}_{\mu}$$
 can decay via a loop:
 $B^{(1,0)}_{\mu} \rightarrow B^{(1,0)}_{H} + \gamma$

Signals at LHC

Production of level (1,0) particles can lead to distinct signal with many **leptons** and **photons**:

Several 100-1000 events observables in multi-lepton or lepton+photon channels for $R^{-1} \lesssim 1000$ GeV, with small SM backgrounds

Signals at the Tevatron

Cross-section are lower and allow sensitivity only for small R^{-1}

Searches in 3*l* and $l + \gamma$ channels give constraint $R^{-1} \leq 270$ GeV

CDF, D0 '07

Spin determination at an e^+e^- collider

Special feature of Standard Model with two extra dimensions: dark matter candidate $B_H^{(1,0)}$ is a scalar

In SM with one extra dimension: $B^{(1,0)}_{\mu}$ (vector) Supersymmetry: $\tilde{\chi}^0_1$ (fermion)

Ideal environment for this task is a 1 TeV e^+e^- collider (ILC)

Spin determination at an e^+e^- collider

Study production of KK-excitations of right-handed electrons, $e_R^{(1,0)}$ For comparison:

$$\begin{array}{ll} \text{6DSM:} & e^+e^- \to e_R^{(1,0)+} e_R^{(1,0)-} & e_R^{(1,0)\pm} \to e^\pm B_H^{(1,0)} \\ \\ \text{5DSM:} & e^+e^- \to e_R^{1+} e_R^{1-} & e_R^{1\pm} \to e^\pm B_\mu^1 \\ \\ \text{SUSY:} & e^+e^- \to \tilde{e}_R^+ \tilde{e}_R^- & \tilde{e}_R^\pm \to e^\pm \tilde{\chi}_1^0 \end{array} \right)$$

Make use of polarized beams: create spin-1 state

$$e^+ \longrightarrow e^-$$

Coupling structure:

6DSM: $e_R^{(1,0)-} \rightarrow e^- B_H^{(1,0)}$ procudes right-handed $e^ \Rightarrow e^-$ go in **forward** direction 5DSM: $e_R^{(1,0)-} \rightarrow e^- B_\mu^1$ procudes left-handed $e^ \Rightarrow e^-$ go in **backward** direction

Clear distinction possible only 2–20 fb⁻¹ of luminosity sufficient to distinguish spins (depending on cross-section)

Constraints from $B \rightarrow s\gamma$

Freitas, Haisch '08

Assume "minimal flavor violation",

i.e. no sources of flavor violation from high-scale physics

- Need to sum over
 KK-levels (k, l) in loop
- Sum does not converge for $k, l \rightarrow \infty$
- Introduce cutoff $k + l < N_{\rm KK} = \Lambda R^{-1}$
- Vary $N_{KK} \in [5, 15]$ to parameterize uncertainty
- Same for mass corrections from localized operators

Constraints from $B \to s \gamma$

Freitas, Haisch '08

Strong constraint $R^{-1} > 650$ GeV at 95% CL

→ Conflict with preferred parameter region from cosmological dark matter density ($R^{-1} < 600$ GeV)

UV operators

Models with extra dimensions break down at a high scale:

- Loops corrections to infinitely many operators are divergent (not renormalizable)
- Sum over KK modes is divergent for $D \gtrsim 6$
- 6D gauge couplings become strong for large energies

Theory only valid up to some cutoff scale Λ

 \rightarrow Unkown new physics enters

Could generate observable effects at low energies, suppressed by Λ , but still important:

- Mass shifts of KK modes
- Flavor changing effects, *e.g.* to $B \rightarrow s\gamma$ \rightarrow Would overwhelm SM contribution by factor ~ 50

Conclusions

- Theories with universal extra dimensions provide a simple framework to extend the Standard Model into additional space dimensions
- Compactification of two extra dimensions on the "chiral square" reproduces the 4D Standard Model as a low-energy theory
- New particles within reach of the LHC/TeVLC are predicted, with distinct signatures and a rich phenomenology
- Explanation for dark matter, but in (moderate) disagreement with constraints from flavor physics
- The completion of the model with viable high-scale dynamics remains an unsolved theoretical problem

Production at LHC

- Large rates for KK-quark, KK-gluon and scalar KK-gluon production
- Expect between 1000 and 10^6 for 100 fb^{-1} luminosity for 500 $\lesssim R^{-1} \lesssim 1500~{\rm GeV}$
- Cascade decays via KK-Wbosons and KK-Leptons
- B^(1,0)_H is stable and weakly interacting: escapes detector undetected as missing momentum

Production at LHC

- Large rates for KK-quark, KK-gluon and scalar KK-gluon production
- Expect between 1000 and 10^6 for 100 fb^{-1} luminosity for 500 $\lesssim R^{-1} \lesssim 1500~{\rm GeV}$
- Cascade decays via KK-Wbosons and KK-Leptons
- B^(1,0)_H is stable and weakly interacting: escapes detector undetected as missing momentum

Dobrescu, Kong, Mahbubani '07

Signals at LHC

Production of level (1,0) particles can lead to distinct signal with many **leptons** and **photons**:

Several 100-1000 events observables in multi-lepton or lepton+photon channels for $R^{-1} \leq 1000$ GeV, with small SM backgrounds

Dark matter

Lightest KK-parity-odd particle $B_{H}^{(1,0)}$ is stable and weakly interacting

 \rightarrow Can be source of dark matter in universe

Compare measured dark matter relic density with model prediction: Depends on how fast $B_H^{(1,0)}$ particles annihilated in early universe

