

Hooman Davoudias

Brookhaven National Laboratory

Based on: H. D., G. Perez, and A. Soni

arXiv:0802.0203 [hep-ph]

Pheno 2008

April 28–30, 2008, University of Wisconsin-Madison

Introduction

- Warped 5D Randall-Sundrum (RS) model: Planck-weak hierarchy.
- $e^{-kr_c\pi}M_5 \sim$ TeV, $kr_c\pi \approx 35$ for $M_5 \sim M_P$. Randall, Sundrum, 1999
- Distinct signatures: spin-2,... TeV-scale resonances.
- SM in 5D bulk, fermion profiles \rightarrow Realistic model of flavor.
- Bulk fermion masses: light (heavy) fermions UV(IR)-localized.

Oblique Corrections

$$S_{tree} \approx 2\pi (v/\kappa)^2$$
; $T_{tree} \approx \frac{\pi}{2\cos\theta_W^2} (v/\kappa)^2 \underbrace{(kr_c\pi)}_{\approx 35}$

- $\kappa \equiv k e^{-k r_c \pi} \sim m_{KK}^{\rm gauge}/2.5$
- KK-tower mixing via EWSB (modified zero-modes) $\propto k r_c \pi$
- $m_{KK}^{\text{gauge}} \sim 3 \text{ TeV} \rightarrow T_{tree} \sim 3 \text{ (RS); data: } |S| \sim |T| \sim 0.1 0.3.$

Little Randall-Sundrum (LRS) Model:

• Truncated;
$$kr_c\pi = 6 \ (M_5 \sim 10^3 \text{ TeV}).$$

- Flavor same as RS: λ_5 (5D Yukawa) and fermion IR-profiles.
- Suppression of T_{tree} in LRS.

 $m_{KK}^{
m gauge} \sim 3 \,\, {
m TeV}
ightarrow T_{tree} \sim 3/y$

LRS truncation factor: $y \equiv (kr_c\pi|_{RS})/(kr_c\pi|_{LRS}) \approx 6$.

- S_{tree} : Largely *universal* shift in light fermion-gauge coupling. (i) zero-mode-KK mixing $\sim \sqrt{kr_c\pi}$.
- (ii) Fermion coupling to KK modes $\sim 1/\sqrt{kr_c\pi}$.
- \Rightarrow S_{tree} unchanged after LRS truncation.
- δT : UV-sensitive loops, cutoff operators: $m_{KK} \gtrsim 10$ TeV.
- LRS: δT loop and cutoff contributions same as RS.

Need gauged 5D custodial symmetry:

 $SU(2)_L \times SU(2)_R \times U(1)_X.$

- T: Eliminate tree, cutoff, UV-sensitive loops.
- $S, T \Rightarrow m_{KK} \gtrsim 3$ TeV. Agashe, Delgado, May, Sundrum, 2003
- Same for RS and LRS.

Non-Oblique Corrections & Flavor Physics

- LRS: λ_5 unscaled \rightarrow non-universality unchanged vis-à-vis RS.
- RS and $Zb\overline{b}$:
- $m_{KK} \gtrsim$ 3 TeV with custodial symmetry and \mathbb{Z}_2 .
- Otherwise: $m_{KK} \gtrsim 5$ TeV. Agashe, Contino, Da Rold, Pomarol, 2006
- LRS and $Zb\overline{b}$:
- Gauge KK-mixing: truncated.
- Untruncated: $\underbrace{b_L b_R^{KK}}_{\text{Yukawa}} \propto m_{KK}(b_R)^{-2} \rightarrow m_{KK}(b_R) \gtrsim 4 \text{ TeV}$
- Implies $m_{KK}(\text{gauge}) \gtrsim 3$ TeV in LRS! (no \mathbb{Z}_2 , but custodial for T)
- $\Delta F = 2$: tree-level KK gluon exchange contribution to ϵ_K .

Agashe, Perez, Soni, 2004

- Dominant contribution from $(V A) \times (V + A)$: UTfit Collaboration, 2007
- $\rightarrow m_{KK} \gtrsim 20$ TeV (RS); $\mathcal{O}(30\%)$ uncertainty Csaki, Falkowski, Weiler, 2008

LRS bound smaller by $1/\sqrt{y} \approx 1/2.5$.

• $g_{KK}|_{UV}\sim g_4/\sqrt{kr_c\pi}$, $g_{KK}|_{IR}\sim g_4\sqrt{kr_c\pi}$.

(i) Broad KK states become narrower by y.

(ii) Width into light states $(e^+e^-, u\bar{u}, ...)$ enhanced by $y \to BR \sim y^2$.

(iii) $\sigma(f_i \bar{f}_j \to KK \to f_k \bar{f}_l) \propto \Gamma(KK \to f_i \bar{f}_j) \mathsf{BR}(KK \to f_k \bar{f}_l)$

(i) \oplus (ii) \oplus (iii) $\Rightarrow S \sim y^3$ and $B \sim 1/y$ (over the width); $S/B \sim y^4$.

LRS, $y \approx 6 \Rightarrow S \rightarrow O(100)S$; $S/B \rightarrow O(1000)S/B!$

 $M_{Z'} \sim 4-5$ TeV and L = 100 fb⁻¹: $Z' \rightarrow \ell^+ \ell^-$, $\ell = e, \mu$.

Compare with RS: $M_{Z'} \sim 2$ TeV and L = 1000 fb⁻¹. Agashe *et al.*, 2007

Revived prospects for golden modes!

Holography

•
$$1/g_4^2 = \tau_{\rm UV} + \tau_{\rm IR} + \underbrace{\log(k/\kappa)}_{kr_c\pi}/(kg_5^2)$$
 $\tau_{UV,IR}$ small QM corrections

• Dual large N CFT: $kg_5^2 \sim 16\pi^2/N$.

LRS dual to larger N CFT : $N^{LRS} \sim y N^{RS}$.

• $N \rightarrow \infty$: inter-composite interactions weaker (*e.g.* T_{tree}).

• S_{tree} : mainly universal vertex correction, unchanged. [Mixing] × [light fermion coupling]: ~ $1/\sqrt{N} \times \sqrt{N}$.

• LRS: λ_5 unchanged \rightarrow separate "Flavor CFT": $N_F \sim N^{RS} < N^{LRS}$.

Non-universality from compositeness held fixed.

Truncation & IR Probes of UV Scales:

- Other truncations are possible:
- TeV \rightarrow 10¹⁰ GeV (ν_R mass, . . .): $y \approx$ 2; $S \rightarrow$ 10S.
- TeV \rightarrow 10¹⁵ GeV (GUT): $y \approx$ 1.3; $S \rightarrow 2S$.
- TeV data: Relative BR into IR (H, t, ...) and UV $(e, \mu, ...)$ channels.
- \Rightarrow Size of 5D slice/conformal window.

UV-Completion:

- Recent LRS UV-model: K. McDonald arXiv:0804.0654 [hep-th].
- 6D geometry, 2 warped directions.
- LRS a 5D slice (4-brane), with $M_5 \sim 10^3$ TeV \rightarrow TeV.
- Warping along the 6th dimension: $M_6 \sim M_P \rightarrow 10^3$ TeV.
- Generalized to *n*-warped spacetime.

- LRS: predictive warped model of flavor, cutoff at $\mathcal{O}(10^3)$ TeV.
- Separate gauge and flavor dynamics.
- Many contributions to precision data suppressed.
- Return of the golden modes (*e.g.* di-leptons)!
- LHC discovery prospects much better than the RS counterpart.
- Dual CFT: larger N dynamics for the weakly gauged sector.
- Collider physics very sensitive to truncation.
- TeV data \rightarrow UV-scale/conformal window.
- UV-completion: stabilize $\Lambda_{UV}^{LRS} \sim 10^3$ TeV (hierarchy).