Quantum Interference Effects Among Helicities at LEP-II and Tevatron

Matthew Buckley UC Berkeley/IPMU

Pheno08 4/29/08

The LHC Era

- Finally have access to TeVscale physics
 - Solution to the Hierarchy Problem?
 - Dark Matter?
 - \implies New Particles
 - SUSY, Extra-Dimensions, Little Higgs? Something totally different?

Spin Measurements

- Most techniques for next-generation colliders concentrate on distinguishing models:
 - Comparison of total cross section
 - Look for higher KK modes in UED
- At a linear collider can use threshold scans
 - Reconstruct production/polar decay angle
 - With long decay chains, can be used at hadron collider.

Spin and Quantum Interference

- Want a spin measurement with as few assumptions as possible.
- Back to Quantum Mechanics!
- Decay of particle with helicity h
 - Rotations about the zaxis (particle momentum) implies that

$$\mathcal{M}_{\text{decay}} \propto e^{iJ_z\phi} = e^{ih\phi}$$

Spin and Quantum Interference

 If particle is produced in multiple helicity states and then decays, then decay amplitudes interfere coherently:

$$\sigma \propto \left| \sum \mathcal{M}_{\text{prod.}} \mathcal{M}_{\text{decay}} \right|^2$$
$$\mathcal{M}_{\text{decay}}(h, \phi) = e^{ih\phi} \mathcal{M}_{\text{decay}}(h, \phi = 0)$$

- Sum runs over all helicities produced, generically $h=-s,\cdots,s \ \ \text{in which case}$

 $\sigma = A_0 + A_1 \cos \phi + \dots + A_n \cos n\phi, \ n = 2s$

(with H.Murayama, W. Klemm, and B.Heinemann)

Applications

 Demonstration of technique using data already on tape, from LEP-II and Tevatron

•
$$p\bar{p} \to Z + \text{jet}, \ Z \to e^- e^+$$
 • $e^- e^+ \to W^- W^+ \to jj\ell^\pm\nu$

- $\sigma = 7 \text{ pb}$ with $p_{T \text{jet}} > 30 \text{ GeV}, |\eta_{\text{jet}}| < 2.1$ and cuts on lepton p_T , η • 3150 events with \sqrt{s} from 182 - 207 GeV
- 1.7(8.0) fb⁻¹ total luminosity

In both cases, expect non-zero A_0, A_1, A_2

Kinematics

Results

- Calculated cross sections using HELAS and the adaptive Monte-Carlo program BASES.
- With only cuts on jet p_T , η for Tevatron data, and no cuts on LEP-II:

Effects of Cuts

- However, detectors cannot see forward regions, and need isolation cuts on jets/leptons.
- CDF cuts:

|--|

Jet transverse momentum	$p_{T,j} > 30 \text{ GeV}$
Jet η	$ \eta < 2.1$
Invariant mass of lepton pair	$66 < m_{\ell\ell} < 116$
Central electron η	$ \eta < 1$
Second electron η	$ \eta < 1 \text{ or } 1.2 < \eta < 2.8$
Electron E_T	$E_T > 25 \text{ GeV}$
Electron isolation cuts	$\Delta R_{e-j} > 0.7$

Lepton momentum	$p_\ell > 25 {\rm GeV}$
Polar angle θ of final state particles	$ \cos \theta < 0.95$
Neutrino energy fraction	$R_{\nu} > 0.07$
Visible energy fraction	$R_{\rm vis} > 0.3$
Neutrino transverse momentum	$p_{T,\nu} > 16 \text{ GeV}$
Lepton isolation	$\Delta R > 0.75, 0.5, 0.2$

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotationally Invariant Cuts

Applying these rotationally invariant cuts
(And with looser acceptances at Tevatron)

A_1/A_0	0.039 ± 0.022
A_{2}/A_{0}	0.083 ± 0.021
A_{3}/A_{0}	0.000 ± 0.022
A_{4}/A_{0}	0.000 ± 0.023

A_{1}/A_{0}	-0.215 ± 0.069
A_{2}/A_{0}	-0.068 ± 0.071
A_{3}/A_{0}	0.000 ± 0.073
A_{4}/A_{0}	0.000 ± 0.075

LEP-II Efficiencies

- OPAL uses energy deposition cuts to isolate leptons
 - We used ΔR cuts with lower efficiencies.

A_{1}/A_{0}	-0.211 ± 0.050
A_{2}/A_{0}	-0.081 ± 0.052
A_{3}/A_{0}	0.000 ± 0.053
A_{4}/A_{0}	0.000 ± 0.054

- Higher efficiency \rightarrow better statistics
- Using $\Delta R = 0$, $\epsilon \sim 90\%$ (non-rotational cuts) $\epsilon \sim 15\%$ (rotational cuts)
- Combine ALEPH, L3, DELPHI, OPAL:

A_1/A_0	-0.207 ± 0.027
A_2/A_0	-0.072 ± 0.028
A_{3}/A_{0}	0.000 ± 0.028
A_4/A_0	0.000 ± 0.029

Conclusions

- Interference of helicity states provides a model-independent method of spin measurements.
 - Method can be tested with current data on vector bosons at Tevatron and LEP-II
 - Should be capable of demonstrating that W^{\pm}/Z^{0} have spin ≥ 1