Upsetting the Fine Structure Constant without 12672 Diagrams

Mihailo Backovic, John Ralston, Rainer Schiel

Outline

- •Fine Structure Constant and the Anomalous
- Magnetic Moment of the Electron.
- •Recent Calculations and Measurements of a_e
- Hadronic Contributions
- •New Hadronic Bound State
- •Contributions of New Hadrons to a_{e} , α

Fine Structure Constant

•The most recent **measurement** (Hanneke, Fogwell, Gabrielse, 2008):

$\alpha^{-1} = 137.035999084(51)$

•Fine structure constant related to the electron's magnetic moment anomaly

•Most accurate measurement of α from electron's anomalous magnetic moment.

Measurments / Calculations of a.

•Recent **measurement** of a_e (Hanneke, Fogwell, Gabrielse, 2008):

$$a_e = (1159652180.73 \pm 0.28) \cdot 10^{-12}$$

•Recent **calculation** of a_e (eight order) (Aoyama, Hayakawa, Kinoshita, Nio, 2008):

 $a_e(\text{Rb}) = (1159652182.79 \pm 7.71) \cdot 10^{-12}$ $a_e(\text{Cs}) = (1159652172.99 \pm 9.32) \cdot 10^{-12}$

Measurments / Calculations of a.

•Recent **measurement** of a_e (Hanneke, Fogwell, Gabrielse, 2008):

$$a_e = (1159652180.73 \pm 0.28) \cdot 10^{-12}$$

•Recent **calculation** of a_e (eight order) (Aoyama, Hayakawa, Kinoshita, Nio, 2008):

 $a_e(\text{Rb}) = (1159652182.79 \pm 7.71) \cdot 10^{-12}$ $a_e(\text{Cs}) = (1159652172.99 \pm 9.32) \cdot 10^{-12}$

Recent Measurments / Calculations

Hanneke, Fogwell, Gabrielese, 2008

ae

•Magnetic moment anomaly usually calculated as:

$$a_e = a_e(QED) + a_e(hadron) + a_e(weak)$$

•Most attention is directed towards the QED corrections (Currently eight order accuracy, work towards tenth order with 12672 diagrams).

ae

•Magnetic moment anomaly usually calculated as:

$$a_e = a_e(QED) + a_e(hadron) + a_e(weak)$$

•Most attention is directed towards the QED corrections (Currently eight order accuracy, work towards tenth order with 12672 diagrams).

•Dispersion Integral:

$$a_{\mu}^{had,LO} = \frac{\alpha^2}{3\pi^2} \int_{s_{min}}^{\infty} \mathrm{d}s \frac{K(x(s))}{s} R(s),$$

$$\begin{split} K(x) &= x^2 \left(1 - \frac{x^2}{2} \right) + (1+x)^2 \left(1 + \frac{1}{x^2} \right) \left(\ln(1+x) - x + \frac{x^2}{2} \right) \\ &+ \frac{1+x}{1-x} x^2 \ln x, \end{split}$$

$$x(s) = \frac{1 - \beta_e}{1 + \beta_e} \qquad \beta_e = \sqrt{1 - 4m_e/s} \qquad R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

•Dispersion Integral:

$$a_{\mu}^{had,LO} = \frac{\alpha^2}{3\pi^2} \int_{s_{min}}^{\infty} \mathrm{d}s \frac{K(x(s))}{s} R(s),$$

$$\begin{split} K(x) &= x^2 \left(1 - \frac{x^2}{2} \right) + (1+x)^2 \left(1 + \frac{1}{x^2} \right) \left(\ln(1+x) - x + \frac{x^2}{2} \right) \\ &+ \frac{1+x}{1-x} x^2 \ln x, \end{split}$$

$$x(s) = \frac{1 - \beta_e}{1 + \beta_e} \qquad \beta_e = \sqrt{1 - 4m_e/s} \qquad R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

•Dispersion Integral:

$$a_e^{had,LO} = \frac{\alpha^2}{3\pi^2} \int_{s_{min}}^{\infty} ds \frac{K(x(s))}{s} R(s),$$
 Will come back to this.

$$\begin{split} K(x) &= x^2 \left(1 - \frac{x^2}{2} \right) + (1+x)^2 \left(1 + \frac{1}{x^2} \right) \left(\ln(1+x) - x + \frac{x^2}{2} \right) \\ &+ \frac{1+x}{1-x} x^2 \ln x, \end{split}$$

$$x(s) = \frac{1 - \beta_e}{1 + \beta_e} \qquad \beta_e = \sqrt{1 - 4m_e/s} \qquad R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Davier et al, 2002

Davier et al, 2002

Explains the 3σ discrepancy in muon's anomalous magnetic moment.

•What about bound states of pions?

Explains the 3σ discrepancy in muon's anomalous magnetic moment.

KU

Pi-rhonium Contribution

Use the Breit-Wigner formula to obtain:

$$a_e^{\pi_{2/\rho}} = \frac{3}{\pi} \frac{K(x(m_{\pi_{2/\rho}}^2))}{m_{\pi_{2/\rho}}} \Gamma(\pi_{2/\rho} \to e^+ e^-)$$

Pi-rhonium Contribution

Use the Breit-Wigner formula to obtain:

Pi-rhonium Contribution

•So... if
$$\Gamma(\pi_{2/\rho} \rightarrow e^+ e^-) = 28 eV$$

then...

$$a_e^{\pi_2/\rho} = (4.74049 \pm 0.3) \cdot 10^{-13}$$
 Significant at next order!

Add this contribution to the fine structure constant calculation to get:

$$\alpha^{-1} = 137.0359991399(51)(4)$$

Conclusions

•Excited state of a pionic atom could contribute to the next order of accuracy of the fine structure constant.

- •Need data in the lower energy part of R(s).
- •Nonperturbative methods?
- Next order calculation /experiment should consider this contribution

