Phase transition in the fine structure constant

Danny Marfatia University of Kansas

with Anchordoqui, Barger and Goldberg (0711.4055)

Mass-varying neutrinos

$$
\begin{aligned}
& \rho_{\mathrm{DE}} \sim 3 M_{\mathrm{Pl}}^{2} H_{0}^{2} \sim\left(2.4 \times 10^{-3} \mathrm{eV}\right)^{4} \\
& \delta m^{2} \sim\left(10 \times 10^{-3} \mathrm{eV}\right)^{2}
\end{aligned}
$$

Coupling neutrinos to a light scalar may explain
$\Omega_{\mathrm{DE}} \sim \Omega_{M}$ Fardon, Nelson, Weiner

Minimize $V_{\text {eff }}\left(m_{\nu}\right)=m_{\nu} n_{\nu}+V\left(m_{\nu}\right)$ wrt m_{ν}

Energy Densities
 of Scalar Potential, Neutrino Mass

Variable Neutrino Mass

Status (from low to high redshifts)

- Measurements of transition frequencies in atomic clocks give the limit $|\Delta \alpha / \alpha|<5 \times 10^{-15}$
- Abundance ratio of $\mathrm{Sm}-149$ to $\mathrm{Sm}-147$ at the Oklo natural reactor shows no variation in the last 1.7 Gyr: $|\Delta \alpha / \alpha|<10^{-7}$
- Meteoritic data ($z<0.5$) constrain the beta-decay rate of Re-187 back to the time of solar system formation (4.6 Gyr): $\Delta \alpha / \alpha=(8 \pm 8) \times 10^{-7}$
- Comparison of transition lines in QSO spectra $(0.5<z<4)$ indicate $\Delta \alpha / \alpha=(-0.57 \pm 0.10) \times 10^{-5}$
- Measurements of the CMB $(z=1100)$ accurately determine the temperature at decoupling which depends on the binding energy of hydrogen. Current constraint is $|\Delta \alpha / \alpha|<0.02$
- Primordial abundances from $\mathrm{BBN}(z=10$ billion $)$ depend critically on the neutron-proton mass difference which depends on alpha. Current limit:
$|\Delta \alpha / \alpha|<0.02$

Phase transition in alpha

$$
\begin{aligned}
V_{\mathrm{eff}}^{\mathrm{NR}} & =m_{\nu}(\mathcal{A}) n_{\nu}+V[M(\mathcal{A})] \\
& =\frac{m_{D}^{2}}{M(\mathcal{A})} n_{\nu}+V[M(\mathcal{A})]
\end{aligned}
$$

$$
V_{\text {eff }}^{\mathrm{REL}}=m_{\nu}(\mathcal{A})^{2} \frac{n_{\nu}}{\left\langle E_{\nu}\right\rangle}+V[M(\mathcal{A})]
$$

$$
=\frac{m_{D}^{4}}{\left\langle E_{\nu}\right\rangle M(\mathcal{A})^{2}} n_{\nu}+V[M(\mathcal{A})]
$$

Stationary points given by

$$
\begin{array}{r}
\frac{d V_{\mathrm{ef}}^{\mathrm{NR}}}{d \mathcal{A}}=\left(-\frac{m_{D}^{2} n_{\nu}}{M^{2}}+V^{\prime}(M)\right) \frac{d M}{d \mathcal{A}}=0 \\
\frac{d V_{\mathrm{eff}}^{\mathrm{RFL}}}{d \mathcal{A}}=\left(-\frac{2 m_{D}^{4} n_{\nu}}{\left\langle E_{\nu}\right\rangle M^{3}}+V^{\prime}(M)\right) \frac{d M}{d \mathcal{A}}=0 \\
\mathrm{~V}^{\prime}(M) \equiv \partial V(M) / \partial M
\end{array}
$$

Assumption I: M has a unique stationary point
$M(\mathcal{A}) \simeq M_{o}\left[1+\mathcal{A}^{2} / f^{2}\right]$ in the vicinity of the \min

Additional stationary points will exist if

$$
\begin{aligned}
& \left(\frac{M}{M_{o}}\right)^{j} \frac{V^{\prime}(M)}{V^{\prime}\left(M_{o}\right)}=\frac{n_{\nu}}{n_{\nu, \mathrm{c}}^{i}} \quad j=2,3 \text { if } i=\mathrm{NR}, \mathrm{REL} \\
& n_{\nu, \mathrm{c}}^{\mathrm{NR}} \equiv \frac{M_{o}^{2}}{m_{D}^{2}} V^{\prime}\left(M_{o}\right), \quad n_{\nu, \mathrm{c}}^{\mathrm{REL}} \equiv \frac{M_{o}^{3}}{2 m_{D}^{4}} V^{\prime}\left(M_{o}\right)
\end{aligned}
$$

Assumption II: $M^{2} V^{\prime}(M)$ is an increasing fn of M

Example

$$
V[M(\mathcal{A})]=\Lambda^{4} \ln \left(\left|M(\mathcal{A}) / M_{o}\right|\right)
$$

$$
\left(\frac{M}{M_{o}}\right)^{k}=\frac{n_{\nu}}{n_{\nu, \mathrm{c}}^{i}} \quad k=1,2 \text { for } i=\mathrm{NR}, \text { REL }
$$

$$
n_{\nu, \mathrm{c}}^{\mathrm{NR}}=\frac{\Lambda^{4}}{m_{\nu, 0}}, \quad n_{\nu, \mathrm{c}}^{\mathrm{REL}}=\frac{\left\langle E_{\nu}\right\rangle \Lambda^{4}}{2 m_{\nu, 0}^{2}} \simeq \frac{T_{\nu} \Lambda^{4}}{m_{\nu, 0}^{2}}
$$

$$
m_{\nu, 0} \equiv m_{D}^{2} / M_{o}
$$

For nonrelativistic neutrinos with subcritical neutrino density, the only stationary point is $\mathcal{A}=0$ with $M=M_{o}$
$\Longrightarrow m_{\nu}=m_{\nu, 0}$

No stability issues because neutrino mass is independent of neutrino density

For nonrelativistic neutrinos with supercritical neutrino density,

$$
m_{\nu}=\Lambda^{4} / n_{\nu}
$$

Window of instability

Acceleron mediates an attractive force between neutrinos which can form nuggets that behave like CDM

Afshordi, Zaldarriaga, Kohri

$$
\begin{aligned}
& 1.8\left(\frac{\Lambda}{m_{\nu, 0}}\right)^{1 / 3} \lesssim \frac{T_{\nu}}{\Lambda} \lesssim 1.1 \\
& 2.9\left(\frac{\Lambda_{-3}^{4}}{m_{\nu, 0} / 0.05 \mathrm{eV}}\right)^{1 / 3} \lesssim 1+z \lesssim 6.5 \Lambda_{-3}
\end{aligned}
$$

$$
\Lambda_{-3} \equiv \Lambda /\left(10^{-3} \mathrm{eV}\right)
$$

The instability is avoidable ...
... if growth-slowing effects (dragging) provided by CDM dominate over the acceleron-neutrino coupling

Bjaelde et al.

$$
\beta \equiv\left|\frac{d \ln m_{\nu}}{d \mathcal{A}}\right|=\left|\frac{d \ln M}{d \mathcal{A}}\right|<\sqrt{\frac{\Omega_{\mathrm{CDM}}-\Omega_{\nu}}{2 \Omega_{\nu}}} \frac{1}{M_{\mathrm{Pl}}} \simeq \frac{10}{M_{\mathrm{Pl}}}
$$

$$
\text { If } M=M_{o} e^{\mathcal{A}^{2} / f^{2}} \quad \Longrightarrow \beta=\frac{2|\mathcal{A}|}{f^{2}}<\frac{10}{M_{\mathrm{Pl}}}
$$

$$
T_{\nu}<1.1 \Lambda \Longrightarrow \frac{|\mathcal{A}|}{f}<\sqrt{\ln \frac{12\left(m_{\nu, 0} / 0.05 \mathrm{eV}\right)}{\Lambda_{-3}}}<1.7
$$

$$
\text { for } \Lambda_{-3} \simeq 0.6\left(m_{\nu, 0} / 0.05 \mathrm{eV}\right)^{1 / 4}
$$

$$
\Longrightarrow f / M_{\mathrm{Pl}}>0.34
$$

Discontinuity in alpha

$$
\begin{aligned}
\mathcal{L}_{\mathrm{em}}= & -\frac{1}{4} Z_{F}\left(\mathcal{A} / M_{\mathrm{Pl}}\right) F_{\mu \nu} F^{\mu \nu} \\
= & -\frac{1}{4}\left(1+\kappa \mathcal{A} / M_{\mathrm{Pl}}+\ldots\right) F_{\mu \nu} F^{\mu \nu} \\
& \quad\left|\frac{\Delta \alpha=\left.\partial_{\mathcal{A}} Z_{F}\right|_{0}}{\alpha}\right|=\kappa \frac{\mathcal{A}}{M_{\mathrm{Pl}}}=\kappa \frac{\mathcal{A}}{f} \cdot \frac{f}{M_{\mathrm{Pl}}}
\end{aligned}
$$

Accommodating null low redshift data

Requiring that the acceleron not vary from its ground state till $z=0.5$, so that alpha does not vary, gives

$$
\begin{aligned}
& \Lambda_{-3} \simeq 0.61\left(m_{\nu, 0} / 0.05 \mathrm{eV}\right)^{1 / 4} \\
& \frac{\rho_{\mathcal{A}}}{\rho_{\mathrm{DE}}} \sim 4 \times 10^{-3} \frac{m_{\nu, 0}}{0.05 \mathrm{eV}}
\end{aligned}
$$

The energy density of the acceleron does not saturate the present dark energy

Neutrinos are nonrelativistic with supercritical density for $0.5<z<4$

Reproducing the signal in quasar spectra

$$
\frac{M(\mathcal{A})}{M_{o}}=\left(\frac{1+z}{1+z_{c}}\right)^{3} \Longrightarrow \frac{|\mathcal{A}|}{f}=\sqrt{3 \ln \left(\frac{1+z}{1+z_{c}}\right)}
$$

For $z=2, z_{c}=0.5 \quad|\mathcal{A}| / f \simeq 1.4$
With $f / M_{\mathrm{Pl}} \geq 0.34$

$$
\left|\frac{\Delta \alpha}{\alpha}\right| \gtrsim 0.5 \kappa
$$

Need $\kappa \sim 10^{-5}$ to explain the data

Consistent with $C M B$ and $B B N$ data?

$n_{\nu}>n_{\nu, \mathrm{c}}^{\mathrm{REL}}$ as soon as neutrinos become relativistic

$$
\frac{M}{M_{o}}=\sqrt{\frac{3 \zeta(3)}{2 \pi^{2}} \frac{T_{\nu}^{2} m_{\nu, 0}^{2}}{\Lambda^{4}}} \quad \Longrightarrow|\mathcal{A}| / f \simeq \sqrt{\ln (10 z)}
$$

CMB

$$
\begin{array}{rll}
\left|\frac{\Delta \alpha}{\alpha}\right| \simeq \frac{3 \kappa f}{M_{\mathrm{Pl}}}, & \left|\frac{\Delta \alpha}{\alpha}\right| \simeq \frac{5 \kappa f}{M_{\mathrm{Pl}}} \\
\kappa & <0.02 & \text { recombination } \\
\kappa & <0.01 & \text { BBN }
\end{array}
$$

