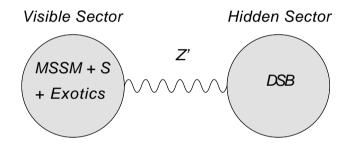


Z'-mediated Supersymmetry Breaking

Gil Paz

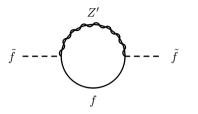

Institute for Advanced Study, Princeton

In collaboration with Paul Langacker, Lian-Tao Wang and Itay Yavin

PRL **100** 041802 (2008) [arXiv:0710.1632] and arXiv:0801.3693 [to appear in PRD]

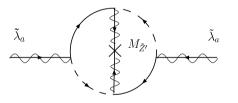
- High(er) energy models (e.g. superstring constructions) often involves extra U(1)'
- Mediation mechanism of SUSY breaking determines the low energy phenomenology
- U(1)' mediator of SUSY breaking sets μ to the scale of m_{soft}
- Can we use it to construct viable models?

- No direct renormalizable interaction between visible and hidden sector fields
- Both are charged under U(1)'


• At Λ_S the Z'-ino becomes massive. For $X = M + \theta^2 F$

$$M_{\tilde{Z}'} \sim \frac{g_{z'}^2}{16\pi^2} \frac{F}{M}$$

• How are MSSM fields affected?


Masses

• Scalars get a mass at one loop

$$m_{\tilde{f}_i}^2 \sim \frac{g_{z'}^2 Q_{f_i}^2}{16\pi^2} M_{\tilde{Z}'}^2 \log\left(\frac{\Lambda_S}{M_{\tilde{Z}'}}\right)$$

• $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauginos get a mass at two loops

$$M_a \sim \frac{g_{z'}^2 g_a^2}{(16\pi^2)^2} M_{\tilde{Z}'} \log\left(\frac{\Lambda_S}{M_{\tilde{Z}'}}\right)$$

• Ratio of masses

$$\frac{m_{\tilde{f}_i}}{M_a} \sim \frac{M_{\tilde{Z}'}}{4\pi} \Big/ \frac{M_{\tilde{Z}'}}{(4\pi)^4} = (4\pi)^3 \sim 1000$$

Masses

• Ratio of masses

$$\frac{m_{\tilde{f}_i}}{M_a} \sim \frac{M_{\tilde{Z}'}}{4\pi} \Big/ \frac{M_{\tilde{Z}'}}{(4\pi)^4} = (4\pi)^3 \sim 1000$$

- LEP direct searches imply EW-ino mass > 100 GeV \Rightarrow heavy scalars ~ 100 TeV $\Rightarrow M_{\tilde{Z}'} \sim 1000$ TeV
- Mini version of split-susy (Arkani-Hamed & Dimopoulos 2004) split susy scalar mass 10^9 GeV
- Like split-susy no flavor or CPV problems due to heavy scalars
- Like split-susy need one fine-tuning to set EW breaking scale
- Unlike split-susy μ parameter scale set by U(1)' breaking

- To break the U(1)' symmetry introduce SM singlet field (charged under U(1)')
- $\mu H_u H_d \rightarrow \lambda S H_u H_d \Rightarrow \text{Large } \mu \text{ term}$
- Include exotic matter $\sum_{i} Y_i S X_i X_i^c$
 - Cancel anomalies associated with U(1)'
 - Drive S negative

• Higgs mass matrix

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} m_{2}^{2} & -A_{H}\langle S \rangle \\ \\ -A_{H}\langle S \rangle & m_{1}^{2} \end{pmatrix}$$
$$m_{2}^{2} = m_{H_{u}}^{2} + g_{z'}^{2}Q_{S}Q_{2}\langle S \rangle^{2} + \lambda^{2}\langle S \rangle^{2}$$
$$m_{1}^{2} = m_{H_{d}}^{2} + g_{z'}^{2}Q_{S}Q_{1}\langle S \rangle^{2} + \lambda^{2}\langle S \rangle^{2}$$

- To generate $\Lambda_{\rm EW}$ must fine-tune linear combination of H_i to be much lighter than natural scale
- Typically find solutions by tuning $|m_2^2| \ll m_1^2 \sim g_{z'}^2 M_{\tilde{Z}'}^2/16\pi^2$
- $\tan\beta \approx m_1^2/A_H \langle S \rangle \sim 10 100$
- Get single SM-like Higgs scalar, with mass ~ 140 GeV.
- Remaining Higgs particles are at $\sim 100~{\rm TeV}$

- $g_{z'} \sim \lambda \sim (0.1 1)$
 - High energy spectrum :
 - Z'-ino mass $M_{\tilde{Z}'} \sim 1000~{\rm TeV}$
 - Typical scalar mass $m_{\tilde{f}_i} \sim 100 {
 m ~TeV}$
 - Exotic superfield mass $Y_i \langle S \rangle \sim 10 100 \text{ TeV}$

$$\begin{split} M_{Z'} &= \sqrt{2} g_{z'} Q_S \langle S \rangle \sim 10 - 100 \text{ TeV} \\ M_{\tilde{S}} &= \frac{M_{Z'}}{M_{\tilde{Z}'}} M_{Z'} \sim 1 - 10 \text{ TeV} \end{split}$$

- Low energy spectrum SM + Higgs + $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauginos
- Interesting case for $g_{z'} \ll \lambda$ "accidental tuning"
 - Very light singlino $M_{\tilde{S}} \sim (10^{-3} 10^{-5}) M_{\tilde{Z}'}$
 - Z' gauge-boson, $M_{Z'} \sim g_{z'} Q_S \langle S \rangle$,
 - even light enough to be produced @ LHC
 - Low energy spectrum

 $SM + Higgs + SU(3)_C \times SU(2)_L \times U(1)_Y$ gauginos +

+ Singlino and even Z^\prime

Specific Models

- The free parameters are: $g_{z'}$, λ , Y_i , U(1)' charges, $M_{\tilde{Z}'}$, and SUSY breaking scale Λ_S
- Minimal choice (leads to a light wino, $M_2 < M_{1,3}$):
 - 3 families of colored exotics (D)
 - -2 families of uncolored $SU(2)_L$ singlet families (E)

both have $U(1)_Y$ charge

• Superpotential

 $W = \lambda S H_u H_d + y_D S D D^c + y_E S E E^c + \text{quark} + \text{lepton}$

• Taking $Q_1 = 1$, Q_2 and Q_Q are free parameters

(other charges are determined by anomalies)

- Other constraints
 - U(1)' spontaneously broken by radiative corrections
 - Allow appropriate fine tuning to break EW symmetry
 - Check for color or charge breaking minima

Five Benchmark Models

	1	2	3	4	5
Q_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{2}$	$-\frac{1}{2}$
Q_Q	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	-2	-2
$g_{z'}$	0.45	0.23	0.23	0.06	0.04
λ	0.5	0.8	0.8	0.3	0.3
Y_D	0.6	0.7	0.8	0.4	0.6
Y_E	0.6	0.6	0.6	0.1	0.1
$\langle S \rangle$	2×10^5	$7 imes 10^4$	6×10^4	2×10^5	8×10^4
aneta	20	29	33	45	60
M_1	2700	735	650	760	270
M_2	710	195	180	340	123
M_3	4300	1200	1100	540	200
m_H	140	140	140	140	140
$m_{ ilde{Q}_3}$	1×10^5	5×10^4	4×10^4	8×10^4	4×10^4
$m_{\tilde{L}_3}$	3×10^5	10^5	10^5	2×10^4	10^{5}
$m_{3/2}$	890	3600	810	3	0.1
$m_{ ilde{S}}$	4300	230	160	31	4
$m_{Z'}$	7×10^4	1.5×10^4	1.3×10^4	5600	2100

All mass units are GeV $~~M_{\tilde{Z}^{\prime}}$ fixed at 1000 TeV

• Other Z' mediation models

Models with gauge unification?

Models with wino/bino LSP?

• Combine with other mediation mechanisms

e.g. Y. Nakayama (arXiv:0712.0619 [hep-ph])

combines Z' mediation with (strongly coupled) D-term gauge mediation

- Incorporate in other top-down models
- Models of the hidden sector

• Motivated by top-down constructions:

New mechanism for mediation of SUSY breaking

via a U(1)' gauge interaction

- Particle spectrum includes
 - heavy sfermions, Higgsinos, exotics, and $Z'\sim 10$ $100~{\rm TeV}$
 - Light gauginos $\sim 100-1000~{\rm GeV},$ of which the lightest can be wino-like and a light Higgs $\sim 140~{\rm GeV}$
 - Singlino that can also be light
- More work to be done!

- At low energies, one light Higgs $m_H^2 = 2\lambda_H v^2 \ (v = 174 \text{ GeV})$
- λ_H determined by matching at $M_{\tilde{Z}'}$ and running down to EW scale:

$$16\pi^2 \frac{d\lambda_H}{dt} = 12 \left(\lambda_H^2 + \lambda_H y_t^2 - y_t^4\right)$$
$$\lambda_H(\mu \approx M_{\tilde{Z}'}) = \frac{1}{4} (g_2^2 + g_Y^2) + g_{z'}^2 Q_2^2 + \frac{1}{2} \lambda^2 \sin^2 2\beta$$

• But

- F-term $\lambda^2 \sin^2 2\beta$ negligible ($\tan \beta \gg 1$)

- U(1)' D-term $\langle SU(2) \times U(1)_Y$ D-term $(g_{z'}, Q_2 \text{ small})$

- \Rightarrow m_H insensitive to the precise details of the high-energy parameters
- m_H affected by running from $M_{\tilde{Z}'}$ down to EW scale
- $\Rightarrow m_H \sim 140 \text{ GeV}$ with few % uncertainty from precise matching and value of $M_{\tilde{Z}'}$ (fixed at $M_{\tilde{Z}'} = 1000 \text{ TeV}$ for concreteness)

Back-up slide: Ino Spectra

Lightest inos : wino, singlino, and possibly gravitino

• Choice of exotics \Rightarrow of the gauginos, wino is the lightest

Dark matter density too low

• Gravitino mass $m_{3/2} \sim F/M_P$

At
$$\Lambda_S$$
: $M_{\tilde{Z}'} \sim \frac{g_{z'}^2}{16\pi^2} \frac{F}{M}$

Assuming $\sqrt{F} \sim M \sim \Lambda_S, \sqrt{F} \sim 10^7 - 10^{11} \text{ GeV}$

 Λ_S is constrained logarithmically by the requirement of radiative symmetry breaking

 $\Rightarrow m_{3/2}$ is exponentially sensitive to the choice of model parameters

- Interesting LHC phenomenology:
 - Wino LSP only
 - Wino NLSP and Singlino LSP
 - Singlino NLSP and Wino LSP