Lightest U-parity Particle (LUP) dark matter

Hye-Sung Lee

University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];

HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

PHENO 2008

Lightest U-parity Particle (LUP) dark matter

in the R-parity violating SUSY model

Hye-Sung Lee

University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];

HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

PHENO 2008

Outline

- Companion symmetry of SUSY
 - R-parity
 - TeV scale U(1)' gauge symmetry
- $R\mbox{-}{\rm parity}$ violating, $U(1)'\mbox{-}{\rm extended}$ SUSY model
 - Proton stability
 - Dark matter candidate

Lightest $U\mbox{-}{\rm parity}$ Particle (LUP) dark matter

Companion symmetry of SUSY

SUSY with R-parity

 $W_{R_p} = \mu H_u H_d$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

+ $(\lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c)$
+ $\frac{\eta_1}{M} Q Q Q L + \frac{\eta_2}{M} U^c U^c D^c E^c + \cdots$

1. μ -problem: $\mu \sim \mathcal{O}(\text{EW})$ to avoid fine-tuning in the EWSB.

(Kim, Nilles [1984])

2. over-constraining of the R-parity: All renormalizable \mathcal{L} violating and \mathcal{B} violating terms (unnecessarily) are forbidden.

3. under-constraining of the R-parity: Dimension 5 $\mathcal{L\&B}$ violating terms still mediate too fast proton decay.

Fast proton decay

[Dim 4 \mathcal{L} violation & Dim 4 \mathcal{B} violation] *R*-parity violating terms [Dim 5 $\mathcal{B\&L}$ violation] *R*-parity conserving terms Look for an additional or alternative explanation (symmetry).

 \rightarrow We will consider TeV scale Abelian gauge symmetry, U(1)'.

TeV scale U(1)' gauge symmetry Natural scale of U(1)' in SUSY models is TeV (linked to soft term scales). \rightarrow provides a natural solution to the μ -problem.

Two conditions to "solve the μ -problem". (z[F]: U(1)' charge of F)

- $\mu H_u H_d$: forbidden $z[H_u] + z[H_d] \neq 0$
- hSH_uH_d : allowed $z[S] + z[H_u] + z[H_d] = 0$

S is a Higgs singlet that breaks the U(1)' spontaneously.

$$\mu_{\rm eff} = h \langle S \rangle \sim \mathcal{O}(\mathrm{EW}/\mathrm{TeV})$$

Goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem
- 3. dark matter problem (non-LSP dark matter)

"R-parity violating U(1)' model" as an alternative to the usual "R-parity conserving model".

Use residual discrete symmetry of the $U(1)^{\prime}$ to address the issues.

Conditions to have $U(1) \rightarrow Z_N$

U(1) have a residual discrete symmetry Z_N if their charges satisfy (after normalization to integers):

- $z[F_i] = q[F_i] + n_i N$
- z[S] = N

 $(z[F_i]: U(1) \text{ charge}, q[F_i]: Z_N \text{ charge})$ for each field F_i .

Residual discrete symmetry of the RPV U(1)' model : Proton stability without R-parity HL, Matchev, Wang [arXiv:0709.0763] HL, Luhn, Matchev [arXiv:0712.3505]

Discrete symmetries in presence of exotics

- There may be TeV scale exotic fields required to cancel chiral anomaly.
- The MSSM discrete symmetries still hold among the MSSM fields.

For a physics process which has only MSSM fields in its effective operators (such as proton decay), we can still discuss with Z_N^{MSSM} .

MSSM fields only

Proton stability in the \mathcal{L} violating case $(U(1)' \rightarrow B_3)$

- 1. Solve the μ -problem with U(1)' gauge symmetry.
- 2. Require \mathcal{L} violating terms such as $\lambda' LQD^c$.
- 3. Then B_3 (baryon triality) is invoked in the MSSM sector.
- 4. Selection rule of B_3 prevents p-decay ($\Delta B = 1$).
- B_3 (baryon triality): (Ibanez, Ross [1992])

	Q	U^{c}	D^{c}	L	E^{c}	N^{c}	H_u	H_d	meaning of q
B_3	0	-1	1	-1	-1	0	1	-1	$-\mathcal{B}+y/3$

Selection rule of B_3 : (Castano, Martin [1994])

$$\Delta \mathcal{B} = 3 \times \text{integer}$$

Recap of the goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem: $U(1)' \rightarrow B_3$
- 3. dark matter problem (non-LSP dark matter)

A dark matter candidate without introducing an independent symmetry?

Residual discrete symmetry extended to hidden sector

: LUP dark matter from hidden sector

Hur, HL, Nasri [arXiv:0710.2653]

HL [arXiv:0802.0506]

SM-singlet (hidden sector) fields

SM-singlet exotics (hidden sector fields): often required for anomaly cancellations with U(1)' ([gravity]² – U(1)', [U(1)']³).

We consider Majorana fields for simplicity.

$$W_{\text{hidden}} = \frac{\xi_{jk}}{2} S X_j X_k$$

These hidden sector fields (X) are neutral and massive particles.

 \rightarrow Potentially dark matter candidate if they are stable.

How to stabilize hidden sector field? Introduce "U-parity"

 $U_p[MSSM] = even, \quad U_p[X] = odd$

• Lightest U-parity Particle (LUP): Lightest $X \to \text{stable}$ either fermion (ψ_X) or scalar (ϕ_X) component

It can be invoked as a residual discrete symmetry of the U(1)'.

$$Z_N^{hid} = U_2$$

	Q	U^c	D^{c}	L	E^{c}	N^{c}	H_u	H_d	X	meaning of q
U_2	0	0	0	0	0	0	0	0	-1	$-\mathcal{U}$ (X number)

(Other exotics: assumed to be heavier than the lightest X.)

Discrete symmetries over the MSSM and the hidden sectors

How consider $U(1)' \rightarrow Z_6$, which is

 $Z_6 = B_3 \times U_2$

with $q = 2q_B + 3q_U \mod 6$.

	Q	U^{c}	D^{c}	L	E^{c}	N^{c}	H_u	H_d	X
$Z_6 = B_3 \times U_2$	0	-2	2	-2	-2	0	2	-2	-3

(Other exotic fields: assumed to be heavier than proton and the LUP \rightarrow not stable due to the discrete symmetry.)

More generally, it is $U(1)' \rightarrow Z_N^{tot}$, which is

 $Z_N^{tot} = Z_{N_1}^{obs} \times Z_{N_2}^{hid}$

(where $N = N_1 N_2$; N_1 and N_2 are coprime).

PHENO 2008

A unified picture of the stabilities in the observable and hidden sectors

$$U(1)' \to Z_{N_1}^{obs} \times Z_{N_2}^{hid}$$

A single U(1)' gauge symmetry provides stabilities for proton (MSSM sector) and dark matter (hidden sector).

LUP dark matter

- LUP is a neutral, massive and stable particle from hidden sector.
- To be a viable dark matter candidate, it should satisfy the relic density and direct detection constraints, too.

Annihilation channels for the LUP dark matter For ψ_X (fermionic) LUP,

- 1. $\psi_X \psi_X \to f \overline{f}$ (Z' mediated s-channel)
- 2. $\psi_X \psi_X \to \widetilde{f} \widetilde{f}^*$ (S mediated s-channel, Z' mediated s-channel)
- 3. $\psi_X \psi_X \to SS$, Z'Z' (S mediated s-channel, ψ_X mediated t-ch)
- 4. $\psi_X \psi_X \to SZ'$ (Z' mediated s-channel, ψ_X mediated t-channel)
- 5. $\psi_X \psi_X \to \widetilde{S}\widetilde{S}$ (Z' mediated s-channel, ϕ_X mediated t-channel)
- 6. $\psi_X \psi_X \to \widetilde{Z}' \widetilde{Z}'$ (ϕ_X mediated *t*-channel)
- 7. $\psi_X \psi_X \to \widetilde{S}\widetilde{Z}'$ (S mediated s-channel, ϕ_X mediated t-channel)

and also similarly for ϕ_X (scalar) LUP.

[Simulated with micrOMEGAs + newly constructed UMSSM model file]

LUP dark matter can satisfy both the relic density and direct detection constraints.

Summary

R-parity conserving model vs. R-parity violating U(1)' model

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)^{\prime}$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)

Summary

R-parity conserving model vs. R-parity violating U(1)' model

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)^{\prime}$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)

Conclusion: TeV scale U(1)' is an attractive alternative to R-parity.