Dark Matter from Technicolor?

Chris Kouvaris
Niels Bohr Institute

The idea of Technicolor (Weinberg, Susskind)

$$SU(N)_{TC} \times SU(3)_C \times SU_L(2) \times U_Y(1)$$

The Electroweak symmetry breaks dynamically via Technicolor Strong Interactions at ~ 250 GeV by the formation of the condensate

$$\left\langle Q^{c,f}\widetilde{Q}_{c,f'}\right\rangle \neq 0 \quad \Rightarrow \quad \text{breaks EW symmetry}$$

W and Z bosons become massive.

Higgs is a composite particle

Minimal Walking Model

$$Q = \begin{pmatrix} U_L \\ D_L \\ -i\sigma^2 U_R^* \\ -i\sigma^2 D_R^* \end{pmatrix} \qquad \text{Spontaneous Symmetry Breaking} \qquad \text{SU(4)} \qquad \longrightarrow \qquad \text{SO(4)}$$

$$\langle Q_i^{\alpha} Q_j^{\beta} \epsilon_{\alpha\beta} E^{ij} \rangle = -2 \langle \overline{U}_R U_L + \overline{D}_R D_L \rangle \qquad E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

9 Goldstone Bosons

$$\overline{D}_R U_L$$
, $\overline{U}_R D_L$, $\frac{1}{\sqrt{2}} (\overline{U}_R U_L - \overline{D}_R D_L)$

Eaten by W's and Z

$$U_L U_L$$
 , $D_L D_L$, $U_L D_L$ carrying technibaryon number

One extra lepton family to cancel Witten's anomaly ν'

Can the Minimal Walking Technicolor provide dark matter candidates?

In other words...

Provide stable, electrically neutral particles

Avoid violation of the Electroweak Precision Measurements

Give the "right" relic density

Avoid detection from the current dark matter search experiments like CDMS.

3 Scenarios

1.

UU,

DD,

UD

Electric charges

y+1,

y-1,

У

For y = 1

DD

is electrically neutral!

lf

DD

is also the lightest technibaryon

It carries technibaryon number It can be stable !!!

hep-ph/0608055

CK, Sannino, Gudnason

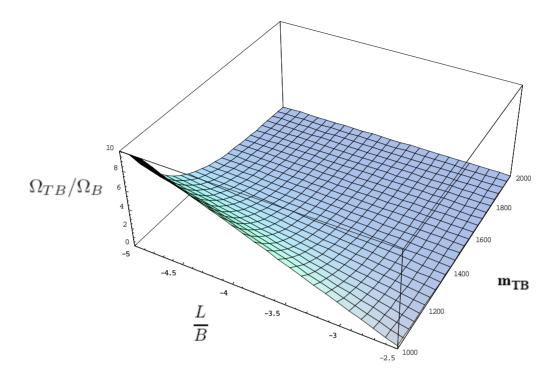
Calculation of Dark Matter Density

Ingredients

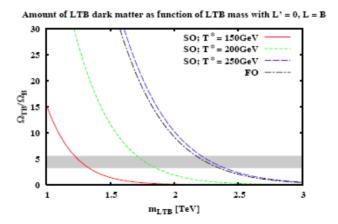
- Technibaryon-antitechnibaryon asymmetry (Nussinov '85)
- Weak equilibration
- Baryon Number violating processes
- Electric Neutrality

Harvey, Turner (1990)

Extra Conditions for technicolor


UD (DD)

→ W+


UU (UD)

TB-L and TB-L', B-L, B-TB are conserved per family

$$(u_L d_L d_L v_L)^3 U_L D_L U_L \zeta_L \longrightarrow \text{vacuum}$$

$$\frac{\Omega_{TB}}{\Omega_B} = \frac{3}{2} \frac{TB}{B} \frac{m_{TB}}{m_p}$$

Majorana Technibaryons

For y=1, D is neutral

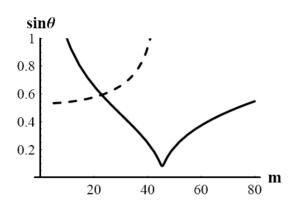
Because D transforms under the adjoint representation,

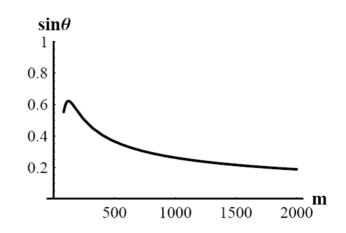
$$D_L^{\alpha}G^{\alpha}$$

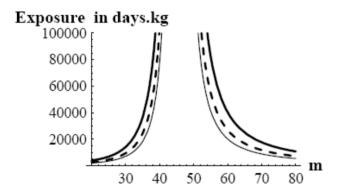
$$D_L^{\alpha}G^{\alpha}$$
 $D_R^{\alpha}G^{\alpha}$

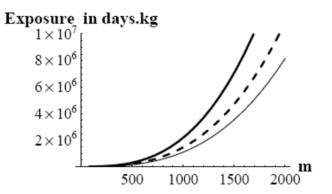
are colorless!!

Seesaw

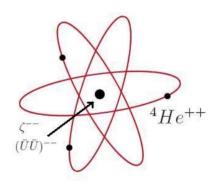

$$L_{mass} = -\frac{1}{2} \left(\psi_L^{\dagger} \psi_R^{c\dagger} \right) \begin{pmatrix} M & m_D \\ m_D & 0 \end{pmatrix} \begin{pmatrix} \psi_L^c \\ \psi_R \end{pmatrix} + h.c.$$


$$N_1 = \cos\theta \begin{pmatrix} \psi_L \\ \psi_L^c \end{pmatrix} + \sin\theta \begin{pmatrix} \psi_R^c \\ \psi_R \end{pmatrix},$$


$$N_2 = \sin \theta \begin{pmatrix} i\psi_L \\ -i\psi_L^c \end{pmatrix} + \cos \theta \begin{pmatrix} -i\psi_R^c \\ i\psi_R \end{pmatrix}$$


The Technibaryon number is broken. There is a \mathbb{Z}_2 R-parity as in neutralinos.

hep-ph/0703266 CK


It is far from being ruled out by CDMS

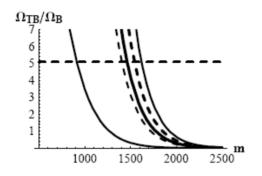
3. For y=1, D is neutral, U has charge +2, ζ -2

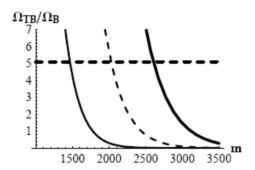
If UU or ζ are the lightest particles of the TC sector

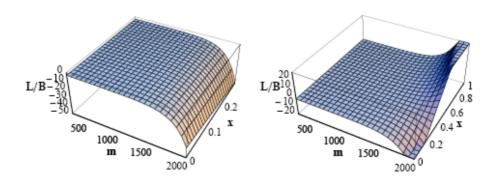
Bound states
$${}^4He^{++}\zeta^{--}$$
 or/and ${}^4He^{++}(\bar{U}\bar{U})^{--}$

For a technibaryon of mass ~TeV, the binding energy is ~1.6 MeV

Khlopov, CK: arXiv:0710.2189


We can calculate the relic density


it does not violate the SBBN


No Anomalous Helium Isotope

It is not ruled out by Dark matter experiments

Relic density

Conclusions

- The new technicolor theories are not ruled out by the electroweak measurements. They don't have the problems of the old baroque theories. They can be tested soon at LHC.
- The minimal walking technicolor model can provide different dark matter candidates, one similar to neutralino and one of SIMP type.
- The dark matter candidates are not ruled out by any observations or direct search dark matter experiments.
- Indirect signatures: still to be done!