Balancing AMSB's Troubles: Lifting the Slepton Masses with a SUSY Seesaw

Nicholas Setzer with R. Mohapatra and S. Spinner

University of Maryland Center for Fundamental Physics

April 27, 2008

Outline

< 6 b

- Explain the small nonzero neutrino masses
- Solve the gauge hierarchy problem
- Provide a viable dark matter candidate

Neutrino Mass

• Follow other SM fermions, add right-handed neutrino

 $y_{\nu}LH_{u}\nu^{c}$

- Experiment states $y_{\nu} \sim 10^{-6} y_e$. Why?
- Seesaw Mechanism
 - ν^c is a singlet of SM
 - add $M_R \nu^c C^{-1} \nu^c$
 - ν and ν^c mix
 - ۲

$$\begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \quad m_D = y_\nu \langle H \rangle$$

•
$$M_R \gg m_D, \ m_{\nu} = -m_D^T M_R^{-1} m_D$$

• $10^3 \text{ Gev} \le M_R \le 10^{15} \text{ GeV}$

Seesaw Mechanism

- Problem: *M_R* undetermined
- Notice that with ν^c , can gauge B L
- Associate M_R with B L breaking scale
- Extend Gauge group: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Motivation

Breaking SUSY

- SUSY solves gauge-hierarchy, but must be broken
- Require:
 - No new flavor violation
 - Predictive relation of breaking parameters
 - Ignorance of UV physics
 - No new couplings
- Anomaly Mediated SUSY breaking (AMSB) satisfies all conditions
 - SUSY breaking due to superconformal anomaly (couplings fixed by SUGRA)
 - Thresholds decouple (UV ignorance)
 - Introduce one scale, $F_{\phi} = m_{3/2}$ (predictive)
 - Flavor violation only from yukawa couplings

Motivation

AMSB Says

$$\begin{split} m_{\phi_i}^2 &= -\frac{1}{4} |F_{\phi}|^2 \left(\frac{1}{2} \frac{\partial \gamma_i}{\partial g_a} \beta_{g_a} + \frac{\partial \gamma_i}{\partial y^{jk\ell}} \beta_y^{jk\ell} + \text{h.c.} \right) \\ a^{ijk} &= -F_{\phi} \beta_y^{ijk} \\ M_a &= \frac{\alpha_a b_a}{4\pi} F_{\phi} \quad \text{no sum over a} \end{split}$$

- These equations are renormalization scale invariant
- They are independent of physics above heavy thresholds and therefore will not lead to flavor violating physics
- Only one parameter F_{ϕ} ; soft parameters $\sim \frac{F_{\phi}}{16\pi^2}$; F_{ϕ} should be 10s of TeV
- Gravitino mass is of order *F_φ* hence avoiding cosmological problems

NS with R. Mohapatra and S. Spinner (UMD)

AMSB Disaster

• In MSSM, AMSB scalar mass formula:

•
$$\operatorname{sgn}\left(-\frac{\partial\gamma_i}{\partial y^{jk\ell}}\beta_y^{jk\ell}\right) = \operatorname{sgn}\left(\beta_y^{jk\ell}\right)$$

- $-\frac{\partial \gamma_i}{\partial g_a} \beta_{g_a}$ is *always negative* for asymptotically enslaved gauge groups (such as $U(1)_Y$)
- Example *e^c*:

$$m^2 = - \left(rac{|F_{\phi}|}{16\pi^2}
ight)^2 \left(rac{198}{25}g_1^4
ight)$$

- MSSM+AMSB gives charge violating vacuum!
- Must modify the MSSM: need new couplings or interference from UV physics

Seesaw Saves AMSB

Seesaw mechanism introduces new couplings:

$$W_{R \text{ seesaw}} = f_c L^c \Delta^c L^c$$

- Δ^c is a $B L = -2 SU(2)_R$ triplet
- $\langle \Delta^c \rangle \sim M_R \sim 10^{10}~{
 m GeV}$ is seesaw scale
- Uses renormalizable operators
- $\overline{\Delta}^c$ with B L = +2 needed to cancel anomalies
- $B L = \pm 2$ retain *R*-parity, $P_R = (-1)^{3(B-L)+2s}$ (dark matter)
- Insist on Parity, need Δ , $\overline{\Delta}$ $SU(2)_L$ triplets

Introduces

$$W_{L\,\text{seesaw}} = fL\Delta L$$

Extended Symmetries

- AMSB decouples thresholds, so new couplings must survive below *M_R*
- Potential has extended symmetry:

$$W_{\Delta} = M_{\Delta} \operatorname{Tr} \left(\Delta^{c} \bar{\Delta}^{c} + \Delta \bar{\Delta} \right) + \lambda_{S} S \operatorname{Tr} \left(\Delta^{c} \bar{\Delta}^{c} + \Delta \bar{\Delta} \right)$$

- yields tree-level global symmetry: complexified U(6)
- After VEV, $U(6) \rightarrow U(5)$ and therefore 22 massless real fields
- Super Higgs mechanism gives mass to six
- 16 massless d.o.f.: 2 doubly charged fields, 2 SU(2)_L triplets
- Non-renormalizable terms break *U*(6), leaving $\mu_{\Delta} \sim v_R^2/M_{\rm Pl} \sim$ 1 TeV

The Model

New Couplings Below M_R

•
$$W \supset fL^c \Delta^c L^c \rightarrow fe^c \Delta^{c--} e^c$$

• $m_{\tilde{e}^c} \sim \left(\frac{|F_{\phi}|}{16\pi}\right)^2 \left(f_c^4 - f_c^2 g_1^2 - g_1^4\right)$

- For large enough *f*, *e*^{*c*} is not tachyonic; similar for left-hand and other generations
- Assume *f*, *f_c* are flavor diagonal to obey experimental lepton flavor violation constraints

• Take a look at the seesaw couplings, *f*₁, *f*₃, *f*_{c1} and *f*_{c3}

Figure: Plots of f_{c1} verses the log of the energy scale. The lines correspond, in ascending order, to $f_1(M_R)$ values of 0.25, 0.5, 0.75, 1, 2.25 and 3.5 for $f_3(M_R) = 0$ and $f_3(M_R) = 3.5$.

• Fixed point-like behavior: $f_{1,3} \sim 0.58$; $f_{c1,c3} \sim 0.62$

Slepton Masses

Slepton masses with $f_1 = f_3$ at M_R

Slepton Mass Differences

- Plot shows $\tilde{e}, \; \tilde{e}^c$ fairly degenerate
- Different from mSUGRA
 - $m_{\tilde{e}} = m_{\tilde{e}^c}$ at M_P but run differently because of $\alpha_2 : \alpha_1$ hierarchy
- Different from mGMSB
 - $m_{\tilde{e}} \sim 3m_{\tilde{e}^c}$ at M_{Mess} because of $\alpha_2 : \alpha_1$ hierarchy
- Does exist in mAMSB, even more pronounced in that case

Slepton Masses

Contours of Slepton Mass Differences

Slepton Masses

Contours of $m_{\tilde{e}^c}$ (GeV)

Limits on fs

- Previous graph suggests bounds on *f* > 0.4 at low energy due to LEP II
- Recall $m_{\Delta,\Delta^{c--}} \sim$ 1 TeV
- muonium-antimuonium oscillation involves f₁ f₂ and doubly-charged exchange
- New flavor violation within current bounds
- But may be detectable in future experiments (PRISM)

- Same generation sleptons are degenerate
- Exotic particles might be detectable at the LHC and muonium-antimuonium oscillations
- dark matter candidate
- Bibliography:
 - Seesaw: Mohapatra and Senjanovic Phys.Rev.Lett.44:912,1980
 - AMSB: Giudice, Luty, Murayama and Rattazzi JHEP 9812:027,1998
 Bandall and Sundrum Nucl Phys B557:70,118,1000

Randall and Sundrum Nucl.Phys.B557:79-118,1999

• This Talk: Mohapatra, Spinner, and NS Phys.Rev.D77:053013,2008