The Upside of Seesaw in Anomaly Mediated Supersymmetry Breaking

Sogee Spinner

University of Maryland Center for Fundamental Physics

April 28, 2008

PHENO 2008

Sogee Spinner (UMD)

The Upside of SUSY Seesaw

A (10) F (10)

4 A N

- A 🖻 🕨

Outline

2 EWSB and SUSYLR+AMSB

3 Bosino Phenomenology

• AMSB has problems other than tachyonic sleptons

- Recall that in AMSB, rescale fields $\hat{Q}\phi \rightarrow Q$, where Q is the canonical field
- Therefore

$$W_{MSSM} \supset \mu \phi^3 \hat{H}_u \hat{H}_d \to \mu \phi H_u H_d$$
 (1)

$$egin{aligned} B\mu &= rac{\sin 2eta}{2} \Big(2\mu^2 + m_{H_u}^2 + m_{H_d}^2 \Big) \ m_{susy}^2 16\pi^2 &\neq rac{\sin 2eta}{2} \Big(4m_{susy}^2 \Big) \end{aligned}$$

- AMSB has problems other than tachyonic sleptons
- Recall that in AMSB, rescale fields $\hat{Q}\phi \rightarrow Q$, where Q is the canonical field
- Therefore

$$W_{MSSM} \supset \mu \phi^3 \hat{H}_u \hat{H}_d \to \mu \phi H_u H_d$$
 (1)

$$B\mu = rac{\sin 2eta}{2} \Big(2\mu^2 + m_{H_u}^2 + m_{H_d}^2 \Big)$$

 $m_{susy}^2 16\pi^2
eq rac{\sin 2eta}{2} \Big(4m_{susy}^2 \Big)$

- AMSB has problems other than tachyonic sleptons
- Recall that in AMSB, rescale fields $\hat{Q}\phi \rightarrow Q$, where Q is the canonical field
- Therefore

$$W_{MSSM} \supset \mu \phi^3 \hat{H}_u \hat{H}_d \rightarrow \mu \phi H_u H_d$$
 (1)

$$egin{aligned} B\mu &= rac{\sin 2eta}{2} \Big(2\mu^2 + m_{H_u}^2 + m_{H_d}^2 \Big) \ m_{susy}^2 16\pi^2
eq rac{\sin 2eta}{2} \Big(4m_{susy}^2 \Big) \end{aligned}$$

- AMSB has problems other than tachyonic sleptons
- Recall that in AMSB, rescale fields $\hat{Q}\phi \rightarrow Q$, where Q is the canonical field
- Therefore

$$W_{MSSM} \supset \mu \phi^3 \hat{H}_u \hat{H}_d \rightarrow \mu \phi H_u H_d$$
 (1)

$$egin{aligned} B\mu &= rac{\sin2eta}{2} \Big(2\mu^2+m_{H_u}^2+m_{H_d}^2\Big)\ m_{susy}^2$$
16 $\pi^2
eq rac{\sin2eta}{2} \Big(4m_{susy}^2\Big) \end{aligned}$

- AMSB seems to be incompatable with the MSSM
- Use the NMSSM where $\mu = \lambda \langle N \rangle$, with *N* a singlet

$$egin{aligned} &\mathcal{W}_{ ext{Yukawa MSSM}} + \lambda \phi^3 \hat{N} \hat{H}_u \hat{H}_d + rac{1}{3} \kappa \phi^3 \hat{N}^3 \ &
ightarrow W_{ ext{Yukawa MSSM}} + \lambda N H_u H_d + rac{1}{3} \kappa N^3 \end{aligned}$$

- AMSB seems to be incompatable with the MSSM
- Use the NMSSM where $\mu = \lambda \langle N \rangle$, with *N* a singlet

$$egin{aligned} & \mathcal{W}_{ extsf{Y}eta kawa \ MSSM} = \lambda \phi^3 \hat{N} \hat{H}_u \hat{H}_d + rac{1}{3} \kappa \phi^3 \hat{N}^3 \ & o \mathcal{W}_{ extsf{Y}eta kawa \ MSSM} + \lambda N \mathcal{H}_u \mathcal{H}_d + rac{1}{3} \kappa N^3 \end{aligned}$$

EWSB in a Toy Model

• Even in this framework though, there is a problem

• Consider the toy theory

$$W = \frac{1}{3}\kappa N^{3}; \rightarrow V = \kappa^{2}|N|^{4} + \frac{1}{3}\left(a_{\kappa}N^{3} + a_{\kappa}^{*}N^{*3}\right) + m_{N}^{2}|N|^{2}$$
$$\langle N \rangle = \frac{-a_{\kappa} \pm \sqrt{a_{\kappa}^{2} - 8\kappa^{2}m_{N}^{2}}}{2\kappa^{2}}$$

Using AMSB trajectories

$$a_{\kappa} = rac{F_{\phi}}{16\pi^2} 6\kappa^3 \quad m_N^2 = rac{|F_{\phi}|^2}{(16\pi^2)^2} 12\kappa^4 \qquad \langle N \rangle = rac{F_{\phi}}{16\pi^2}$$

< □ > < □ > < □ > < □ >

EWSB in a Toy Model

• Even in this framework though, there is a problem

AMSB and EWSB

• Consider the toy theory

$$W = \frac{1}{3}\kappa N^{3}; \rightarrow V = \kappa^{2}|N|^{4} + \frac{1}{3}\left(a_{\kappa}N^{3} + a_{\kappa}^{*}N^{*3}\right) + m_{N}^{2}|N|^{2}$$
$$\langle N \rangle = \frac{-a_{\kappa} \pm \sqrt{a_{\kappa}^{2} - 8\kappa^{2}m_{N}^{2}}}{2\kappa^{2}}$$

Using AMSB trajectories

$$a_{\kappa} = rac{F_{\phi}}{16\pi^2} 6\kappa^3 \quad m_N^2 = rac{|F_{\phi}|^2}{(16\pi^2)^2} 12\kappa^4 \qquad \langle N \rangle = rac{F_{\phi}}{16\pi^2}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

EWSB in a Toy Model

• Even in this framework though, there is a problem

AMSB and EWSB

• Consider the toy theory

$$W = \frac{1}{3}\kappa N^{3}; \rightarrow V = \kappa^{2}|N|^{4} + \frac{1}{3}\left(a_{\kappa}N^{3} + a_{\kappa}^{*}N^{*3}\right) + m_{N}^{2}|N|^{2}$$
$$\langle N \rangle = \frac{-a_{\kappa} \pm \sqrt{a_{\kappa}^{2} - 8\kappa^{2}m_{N}^{2}}}{2\kappa^{2}}$$

Using AMSB trajectories

$$a_{\kappa} = rac{F_{\phi}}{16\pi^2} 6\kappa^3 \quad m_N^2 = rac{|F_{\phi}|^2}{(16\pi^2)^2} 12\kappa^4 \qquad \langle N \rangle = rac{F_{\phi}}{16\pi^2}$$

A D M A A A M M

- 4 ∃ →

$$\langle N \rangle = \frac{F_{\phi}}{16\pi^2} \frac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

$$\langle N \rangle = \frac{F_{\phi}}{16\pi^2} \frac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

$$\langle N \rangle = \frac{F_{\phi}}{16\pi^2} \frac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

$$\langle N
angle = rac{F_{\phi}}{16\pi^2} rac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

$$\langle N
angle = rac{F_{\phi}}{16\pi^2} rac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

< □ > < □ > < □ > < □ >

$$\langle N
angle = rac{F_{\phi}}{16\pi^2} rac{\kappa}{4} \Big(-6 \pm \sqrt{-60} \Big)$$

- Problem with the radical: $\sqrt{a_{\kappa}^2 8\kappa^2 m_N^2}$, m_N^2 is not negative, no gauge interactions
- EWSB is not possible
- In the full NMSSM, get a little help from $a_{\lambda}NH_{u}H_{d} \rightarrow a_{\lambda}v_{u}v_{d}N$
- VEV is too small, chargino masses, $m_{\tilde{\chi}^+} \sim \mu$ is below LEP II bound:Kitano, Kribs and Murayama hep-ph/0402215
- Can cure this by adding colored vector-like particles do drive m²_N negative: Chacko, Luty, Maksymyk and Ponton hep-ph/9905390
- Some add a linear term $W \supset LN$

EWSB with SUSYLR+AMSB

In this framework though, EWSB can arises from the model

Consider the non-renormalizable part of the superpotential

$$W_{NR} \supset rac{\lambda_N}{M_P \phi} N^2 \operatorname{Tr} \left(\Delta^c \bar{\Delta}^c
ight) \rightarrow \mu_N \equiv rac{\lambda_N v_R^2}{M_P}$$

• An effective superpotential mass term for *N*. The presence of ϕ leads to tree level SUSY breaking

$$V_{Soft} \supset -rac{1}{2}F_{\phi}\mu_N N^2$$

EWSB and SUSYLR+AMSB

- In this framework though, EWSB can arises from the model
- Consider the non-renormalizable part of the superpotential

$$W_{NR} \supset \frac{\lambda_N}{M_P \phi} N^2 \operatorname{Tr} \left(\Delta^c \bar{\Delta}^c \right) \rightarrow \mu_N \equiv \frac{\lambda_N v_R^2}{M_P}$$

• An effective superpotential mass term for *N*. The presence of ϕ leads to tree level SUSY breaking

$$V_{Soft} \supset -\frac{1}{2}F_{\phi}\mu_N N^2$$

EWSB and SUSYLR+AMSB

- In this framework though, EWSB can arises from the model
- Consider the non-renormalizable part of the superpotential

$$W_{NR} \supset rac{\lambda_N}{M_P \phi} N^2 \operatorname{Tr} \left(\Delta^c \bar{\Delta}^c
ight) \
ightarrow \mu_N \equiv rac{\lambda_N v_R^2}{M_P}$$

 An effective superpotential mass term for *N*. The presence of φ leads to tree level SUSY breaking

$$V_{Soft} \supset -rac{1}{2}F_{\phi}\mu_N N^2$$

EWSB and SUSYLR+AMSB

- In this framework though, EWSB can arises from the model
- Consider the non-renormalizable part of the superpotential

$$W_{NR} \supset rac{\lambda_N}{M_P \phi} N^2 \operatorname{Tr} \left(\Delta^c \bar{\Delta}^c
ight) \
ightarrow \mu_N \equiv rac{\lambda_N v_R^2}{M_P}$$

 An effective superpotential mass term for *N*. The presence of φ leads to tree level SUSY breaking

$$V_{Soft} \supset -rac{1}{2}F_{\phi}\mu_N N^2$$

VEV of N

• Turns out μ_N does not have to be too big

$$\langle N
angle pprox rac{-a_\kappa \pm \sqrt{a_\kappa^2 - 8\kappa^2 (ilde{m}_N^2)}}{2\sqrt{2}\kappa}$$

•
$$\tilde{m}_N^2 \approx m_N^2 - \mu_N F_\phi$$

Now possible to make that mass term negative

VEV of N

• Turns out μ_N does not have to be too big

$$\langle N
angle pprox rac{-a_\kappa \pm \sqrt{a_\kappa^2 - 8\kappa^2 (ilde{m}_N^2)}}{2\sqrt{2}\kappa}$$

•
$$\tilde{m}_N^2 \approx m_N^2 - \mu_N F_\phi$$

Now possible to make that mass term negative

VEV of N

• Turns out μ_N does not have to be too big

$$\langle N
angle pprox rac{-a_\kappa \pm \sqrt{a_\kappa^2 - 8\kappa^2 (ilde{m}_N^2)}}{2\sqrt{2}\kappa}$$

•
$$\tilde{m}_N^2 \approx m_N^2 - \mu_N F_\phi$$

Now possible to make that mass term negative

4 A N

-

Constant $\langle N \rangle$ (GeV) Contours

Sogee Spinner (UMD)

The Upside of SUSY Seesaw

April 28, 2008 11

1/21

Outline

AMSB and EWSB

EWSB and SUSYLR+AMSB

- LSP is important for phenomenology since heavier particles cascade decay to it
- Gaugino contribution easy to see, for AMSB $M_3: M_2: M_1 \sim \frac{\alpha_3 b_3}{\alpha_2 b_2}: 1: \frac{\alpha_1 b_1}{\alpha_2 b_2}$
- In mAMSB \sim 8 : 1 : 3.5, wino LSP

- LSP is important for phenomenology since heavier particles cascade decay to it
- Gaugino contribution easy to see, for AMSB $M_3: M_2: M_1 \sim \frac{\alpha_3 b_3}{\alpha_2 b_2}: 1: \frac{\alpha_1 b_1}{\alpha_2 b_2}$
- In mAMSB \sim 8 : 1 : 3.5, wino LSP

- LSP is important for phenomenology since heavier particles cascade decay to it
- Gaugino contribution easy to see, for AMSB
 M₃ : M₂ : M₁ ~ ^{α₃b₃}/_{α₂b₂} : 1 : ^{α₁b₁}/_{α₂b₂}
- In mAMSB \sim 8 : 1 : 3.5, wino LSP

- LSP is important for phenomenology since heavier particles cascade decay to it
- Gaugino contribution easy to see, for AMSB $M_3: M_2: M_1 \sim \frac{\alpha_3 b_3}{\alpha_2 b_2}: 1: \frac{\alpha_1 b_1}{\alpha_2 b_2}$
- In mAMSB \sim 8 : 1 : 3.5, wino LSP

- Wino charginos and neutralinos form a highly degenerate isospin triplet
- In large M_2 limit, $\Delta_{\chi} \sim \alpha M_W \sim 165$ MeV
- Therefore, $\tilde{\chi}_1^+ \rightarrow \pi^+ \chi_1^0$
- Pion very soft, can't trigger
- Have to trigger on hard radiated photons or jets, look for chargino track. Chen, Drees, and Gunion hep-ph/9512230; Feng, Moroi, Randall, Strassler and Su hep-ph/9904250

- Wino charginos and neutralinos form a highly degenerate isospin triplet
- In large M_2 limit, $\Delta_{\chi} \sim \alpha M_W \sim 165$ MeV
- Therefore, $\tilde{\chi}_1^+ \rightarrow \pi^+ \chi_1^0$
- Pion very soft, can't trigger
- Have to trigger on hard radiated photons or jets, look for chargino track. Chen, Drees, and Gunion hep-ph/9512230; Feng, Moroi, Randall, Strassler and Su hep-ph/9904250

- Wino charginos and neutralinos form a highly degenerate isospin triplet
- In large M_2 limit, $\Delta_{\chi} \sim \alpha M_W \sim 165$ MeV
- Therefore, ${\tilde \chi}^+_1
 ightarrow \pi^+ \chi^0_1$
- Pion very soft, can't trigger
- Have to trigger on hard radiated photons or jets, look for chargino track. Chen, Drees, and Gunion hep-ph/9512230; Feng, Moroi, Randall, Strassler and Su hep-ph/9904250

- Wino charginos and neutralinos form a highly degenerate isospin triplet
- In large M_2 limit, $\Delta_{\chi} \sim \alpha M_W \sim 165$ MeV
- Therefore, $\tilde{\chi}^+_1 \rightarrow \pi^+ \chi^0_1$
- Pion very soft, can't trigger
- Have to trigger on hard radiated photons or jets, look for chargino track. Chen, Drees, and Gunion hep-ph/9512230; Feng, Moroi, Randall, Strassler and Su hep-ph/9904250

- Wino charginos and neutralinos form a highly degenerate isospin triplet
- In large M_2 limit, $\Delta_{\chi} \sim \alpha M_W \sim 165$ MeV
- Therefore, $\tilde{\chi}^+_1 \rightarrow \pi^+ \chi^0_1$
- Pion very soft, can't trigger
- Have to trigger on hard radiated photons or jets, look for chargino track. Chen, Drees, and Gunion hep-ph/9512230; Feng, Moroi, Randall, Strassler and Su hep-ph/9904250

Neutralinos and Charginos in mAMSB

• Promising SUSY signals come from chargino leptonic decays:

- $\chi^+\chi^+ \rightarrow l^+l^+ +$ missing energy same sign dilepton
- $\chi^+\chi^0 \rightarrow I^+I^-I^+ + \text{missing energy} \text{trilepton}$

Now such signals are not possible

• Can have bino created by \tilde{q}_R which can decay leptonically. But won't have signals mentioned above.

Neutralinos and Charginos in mAMSB

• Promising SUSY signals come from chargino leptonic decays:

- $\chi^+\chi^+ \rightarrow l^+l^+ +$ missing energy same sign dilepton
- $\chi^+\chi^0 \rightarrow I^+I^-I^+ + \text{missing energy trilepton}$

• Now such signals are not possible

• Can have bino created by \tilde{q}_R which can decay leptonically. But won't have signals mentioned above.

Neutralinos and Charginos in mAMSB

• Promising SUSY signals come from chargino leptonic decays:

- $\chi^+\chi^+ \rightarrow l^+l^+ +$ missing energy same sign dilepton
- $\chi^+\chi^0 \rightarrow I^+I^-I^+ + \text{missing energy trilepton}$
- Now such signals are not possible
- Can have bino created by q̃_R which can decay leptonically. But won't have signals mentioned above.

Neutralinos and Charginos in SUSYLR+AMSB

• Here $b_2 = 6$ and $b_1 = \frac{78}{5}$

- $M_3: M_2: M_1 \sim 1.3: 1: 1.3$
- Now wino, bino and Higgsino have similar masses. LSP has significant Higgsino and wino component
- Left-handed squarks decay to heavier mostly wino or chargino state which can decay leptonically
- Δ_{χ_1} is order of magnitude larger due to $\tilde{H}_u \tilde{H}_d$ mixing in neutralino sector, a little easier to see at a lepton collider

- Here $b_2 = 6$ and $b_1 = \frac{78}{5}$
- $M_3: M_2: M_1 \sim 1.3: 1: 1.3$
- Now wino, bino and Higgsino have similar masses. LSP has significant Higgsino and wino component
- Left-handed squarks decay to heavier mostly wino or chargino state which can decay leptonically
- Δ_{χ_1} is order of magnitude larger due to $\tilde{H}_u \tilde{H}_d$ mixing in neutralino sector, a little easier to see at a lepton collider

- Here $b_2 = 6$ and $b_1 = \frac{78}{5}$
- $M_3: M_2: M_1 \sim 1.3: 1: 1.3$
- Now wino, bino and Higgsino have similar masses. LSP has significant Higgsino and wino component
- Left-handed squarks decay to heavier mostly wino or chargino state which can decay leptonically
- Δ_{χ_1} is order of magnitude larger due to $\tilde{H}_u \tilde{H}_d$ mixing in neutralino sector, a little easier to see at a lepton collider

- Here $b_2 = 6$ and $b_1 = \frac{78}{5}$
- $M_3: M_2: M_1 \sim 1.3: 1: 1.3$
- Now wino, bino and Higgsino have similar masses. LSP has significant Higgsino and wino component
- Left-handed squarks decay to heavier mostly wino or chargino state which can decay leptonically
- Δ_{χ_1} is order of magnitude larger due to $\tilde{H}_u \tilde{H}_d$ mixing in neutralino sector, a little easier to see at a lepton collider

- Here $b_2 = 6$ and $b_1 = \frac{78}{5}$
- $M_3: M_2: M_1 \sim 1.3: 1: 1.3$
- Now wino, bino and Higgsino have similar masses. LSP has significant Higgsino and wino component
- Left-handed squarks decay to heavier mostly wino or chargino state which can decay leptonically
- Δ_{χ_1} is order of magnitude larger due to $\tilde{H}_u \tilde{H}_d$ mixing in neutralino sector, a little easier to see at a lepton collider

- Squark mases below 1 TeV considered natural, otherwise reintroduce problem with Higgs mass
- *F*_φ < 63 TeV
- Upper bound on bino and wino masses: $M_1 < 1350$ GeV and $M_2 < 980$ GeV
- Much larger than GMSB $M_1 < 130$ GeV and $M_2 < 260$ GeV or mAMSB $M_1 < 200$ GeV and $M_2 < 640$ GeV

- Squark mases below 1 TeV considered natural, otherwise reintroduce problem with Higgs mass
- *F*_φ < 63 TeV
- Upper bound on bino and wino masses: $M_1 < 1350$ GeV and $M_2 < 980$ GeV
- Much larger than GMSB $M_1 < 130$ GeV and $M_2 < 260$ GeV or mAMSB $M_1 < 200$ GeV and $M_2 < 640$ GeV

- Squark mases below 1 TeV considered natural, otherwise reintroduce problem with Higgs mass
- *F*_φ < 63 TeV
- Upper bound on bino and wino masses: $M_1 < 1350$ GeV and $M_2 < 980$ GeV
- Much larger than GMSB $M_1 < 130$ GeV and $M_2 < 260$ GeV or mAMSB $M_1 < 200$ GeV and $M_2 < 640$ GeV

- Squark mases below 1 TeV considered natural, otherwise reintroduce problem with Higgs mass
- *F*_φ < 63 TeV
- Upper bound on bino and wino masses: $M_1 < 1350$ GeV and $M_2 < 980$ GeV
- Much larger than GMSB $M_1 < 130$ GeV and $M_2 < 260$ GeV or mAMSB $M_1 < 200$ GeV and $M_2 < 640$ GeV

Constant $\langle N \rangle$ (GeV) Contours

Bosino Spectrum

Sogee Spinner (UMD)

- Mostly wino or Higgsion LSP, typically, annihilate away too fast, not enough dark matter
- In AMSB, gravitino is heavy and decays after LSP freeze out but before big bang nucleosynthesis, $\tilde{G} \rightarrow SM + LSP$
- Such decay lead to out of equilibrium freeze out, and a proper relic abundance; Moroi and Randall Nucl.Phys.B570:455-472,2000
- Futhermore, the LSP evades current experimental bounds and would be detectable in future experiments

- Mostly wino or Higgsion LSP, typically, annihilate away too fast, not enough dark matter
- In AMSB, gravitino is heavy and decays after LSP freeze out but before big bang nucleosynthesis, $\tilde{G} \rightarrow SM + LSP$
- Such decay lead to out of equilibrium freeze out, and a proper relic abundance; Moroi and Randall Nucl.Phys.B570:455-472,2000
- Futhermore, the LSP evades current experimental bounds and would be detectable in future experiments

- Mostly wino or Higgsion LSP, typically, annihilate away too fast, not enough dark matter
- In AMSB, gravitino is heavy and decays after LSP freeze out but before big bang nucleosynthesis, $\tilde{G} \rightarrow SM + LSP$
- Such decay lead to out of equilibrium freeze out, and a proper relic abundance; Moroi and Randall Nucl.Phys.B570:455-472,2000
- Futhermore, the LSP evades current experimental bounds and would be detectable in future experiments

- Mostly wino or Higgsion LSP, typically, annihilate away too fast, not enough dark matter
- In AMSB, gravitino is heavy and decays after LSP freeze out but before big bang nucleosynthesis, $\tilde{G} \rightarrow SM + LSP$
- Such decay lead to out of equilibrium freeze out, and a proper relic abundance; Moroi and Randall Nucl.Phys.B570:455-472,2000
- Futhermore, the LSP evades current experimental bounds and would be detectable in future experiments

Summary

- Presented a well motivated solution to both the tachyon and EWSB problems of AMSB.
- Less hierarchy between colored and uncolored particles
- collider signatures similar to traditional SUSY
- Promising dark matter candidate

- Presented a well motivated solution to both the tachyon and EWSB problems of AMSB.
- Less hierarchy between colored and uncolored particles
- collider signatures similar to traditional SUSY
- Promising dark matter candidate

- Presented a well motivated solution to both the tachyon and EWSB problems of AMSB.
- Less hierarchy between colored and uncolored particles
- collider signatures similar to traditional SUSY

Promising dark matter candidate

- Presented a well motivated solution to both the tachyon and EWSB problems of AMSB.
- Less hierarchy between colored and uncolored particles
- collider signatures similar to traditional SUSY
- Promising dark matter candidate