On Vector Unparticle Physics from B to K (γ) + missing energy (work in progress)

Mohammad AlFiky Wayne State University April 28 PHENO 08 Symposium, Wisconsin-Madison

Outline

- Brief Introduction
- Vector Unparticle (Grinstein et.al)
- b to s transition and Vector Unparticle effective interactions
- •B decay into K + missing energy
- •B decay into γ + missing energy
- Invisible Z decay
- •conclusion

Brief Introduction

Unparticles have fractional scaling dimension Fractional dim. appears in physics in the context of Dim. Reg.

It is common in math, Fractals

Brief Introduction

The magnification of the last image relative to the first one is about 60,000,000,000 to 1

Vector Unparticles

There are unitarity constraints on gauge invariant primary CFT operator of scaling dimension, d

$$d \ge j_1 + j_2 + 2 - \delta_{j_1 j_2, 0}$$

where j's are Lorentz spins

G. Mack, "All Unitary Ray Representations Of The Conformal Group SU(2,2) With Positive Energy," Commun. Math. Phys. 55, 1 (1977).

For gauge invariant primary vector operator \mathcal{U}^{μ} we have $d \geq 3$ with d = 3 IFF $\partial_{\mu}\mathcal{U}^{\mu} = 0$

B. Grinstein, K. Intriligator and I. Z. Rothstein, arXiv:0801.1140 [hep-ph].
H. Osborn and A. C. Petkou Annals Phys. 231, 311 (1994) [arXiv:hep-th/9307010].

Vector Unparticles

The 2-point function for \mathcal{U}^{μ} is determined by

$$\langle \mathcal{O}_{\mu}(x)^{\dagger} \mathcal{O}_{\nu}(0) \rangle = C \frac{1}{(2\pi)^2} \frac{I_{\mu\nu}(x)}{(x^2)^d} \quad where \quad I_{\mu\nu} \equiv g_{\mu\nu} - 2 \frac{x_{\mu} x_{\nu}}{x^2}$$

and going to momentum space then

$$\frac{1}{(2\pi)^2} \frac{I_{\mu\nu}(x)}{(x^2)^d} = \frac{(d-1)\Gamma(2-d)}{4^{d-1}\Gamma(d+1)} \int \frac{d^4k}{(2\pi)^4} e^{ik\cdot x} (k^2)^{d-2} \left[g_{\mu\nu} - \frac{2(d-2)}{d-1} \frac{k_{\mu}k_{\nu}}{k^2} \right]$$

Hence,

$$\int d^4x e^{-ik \cdot x} \langle 0|T(O_{\mu}(x)O_{\nu}(0))|0\rangle = -iC(-k^2 - i\epsilon)^{d-3} \left[k^2 g_{\mu\nu} - \frac{2(d-2)}{d-1}k_{\mu}k_{\nu}\right]$$

$$\sum \eta^{\mu} \eta^{\nu} = -g^{\mu\nu} + a \frac{q^{\mu} q^{\nu}}{q^2} \qquad a = \frac{2(d-2)}{d-1}$$

FCNC Effective Interactions

Integrating out M between Unparticles and SM

$$\mathcal{L} = \frac{g}{M^2} \frac{1}{\Lambda_{\mathcal{U}}^{d_{\mathcal{U}}-3}} \ \bar{s}\gamma_{\mu} (C_V + C_A \gamma_5) b \ \mathcal{U}^{\mu} + h.c. \qquad \mathsf{SM} \qquad \mathsf{BZ}$$

Integrating out M between SM operators

$$\mathcal{L} = \frac{C_V^2}{M^2} \; (\bar{s}\gamma_\mu b)^2 + h.c. \qquad \text{SM} \qquad \text{M} \qquad \text{SM}$$

Bounds from effective contact interactions for $\Delta B = 2$ transitions

$$\mathcal{L}_{\Delta B=2} = \frac{C_{bd}^2}{M^2} (\bar{d_L}\gamma_\mu b_L)^2 + \frac{C_{bs}^2}{M^2} (\bar{s_L}\gamma_\mu b_L)^2$$

These terms contribute to B mass difference

$$\frac{\Delta m_B}{m_B} = \frac{2|M_{12}^B|}{m_B} \sim \frac{C^2}{3} \frac{f_B^2}{M^2}$$

FCNC Effective Interactions

Experimentally

$$\frac{\Delta m_B}{m_B} \sim 6.3 \times 10^{-14}$$
 and $\frac{\Delta m_{B_s}}{m_{B_s}} \sim 6.3 \times 10^{-12}$

Hence

$$C_{bd}^2 \le 6 \times 10^{-6} (\frac{M}{1 \ TeV})^2$$
 and $C_{bs}^2 \le 2 \times 10^{-4} (\frac{M}{1 \ TeV})^2$

In the numerical analysis we will be using

$$(\frac{C}{M})^2 \le 10^{-11} GeV^{-2}$$

But Scale Invariance is Broken

 $\frac{\Lambda^{3-d}}{M}|H|^2\mathcal{U}$

Shirman et. al, Phys. Rev. D76 (2007) 075004 Shirman et. al, Phys. Rev. D76 (2007) 115002

 $\mathcal{U}^2\left(H^{\dagger}H\right)$

T. Kikuchi et al arXiv:0711.1506 [hep-ph]

 $\frac{\Lambda^{6-d^*}}{M^4} |H|^2 \mathcal{U}^\mu \mathcal{U}_\mu$

V. Barger et al Phys.Lett.B661: 276-286,2008

$$|\langle 0|O_{\mathcal{U}}|P\rangle|^{2}\rho(P^{2}) = A_{d_{\mathcal{U}}}\theta(P^{0})\theta(P^{2}-\mu^{2})(P^{2}-\mu^{2})^{d_{\mathcal{U}}-2}$$

We will take $\mu = 0.5 \ GeV$

Theoretical estimate

 $\mathcal{BR}(B \to K \nu \bar{\nu}) \sim 10^{-6}$

Experimental Bound

 $\mathcal{BR}(B \to K \nu \bar{\nu}) < 1.4 \times 10^{-5}$

B to K + Missing energy

$B \to K + \mathcal{U}$

$$\frac{d\Gamma}{dE_X} = \frac{A_{d_{\mathcal{U}}}}{8\pi^2 m_B} \; \frac{\sqrt{E_X^2 - m_X^2} \; \theta(m_B^2 - 2m_B E_X + m_X^2 - \mu^2)}{(m_B^2 - 2m_B E_X + m_X^2 - \mu^2)^{2-d_{\mathcal{U}}}} \; |\overline{\mathcal{M}}|^2$$

$$\begin{aligned} |\overline{\mathcal{M}}|^2 &= \left(\frac{g}{M}\right)^2 \left(\frac{C_V}{M}\right)^2 \frac{1}{\Lambda^{2d-6}} \left(|f_+|^2 \left[a \frac{(m_B^2 - m_K^2)^2}{m_B^2 + m_K^2 - 2m_B E_K} - (m_B^2 + m_K^2 + 2m_B E_K)\right] \\ &+ (a-1)|f_-|^2 (m_B^2 + m_K^2 - 2m_B E_K) \\ &+ 2(a-1)f_+ f_- (m_B^2 - m_K^2)) \end{aligned}$$

B to K + Missing energy

Plotting the spectrum $R \equiv \frac{1}{\Gamma} \frac{d\Gamma}{dx}$ where $x = \frac{2E_K}{m_B}$

B to K + Missing energy

The difference between using the correct treatment of vector Unparticle and the old one can be parameterized by

B to K + Vector Unparticle

Dependence of the branching ratio on M and Λ in GeV

**B to
$$\gamma$$
 + Missing energy**
SM $B \rightarrow \gamma + \nu \bar{\nu}$

Effective Interaction $H_{eff} = C \ (\bar{s}b)_{V-A} (\bar{\nu}\nu)_{V-A}$

$$C = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi sin^2 \theta_W} V_{tb} V_{tq}^* \frac{x}{8} \left(\frac{x+2}{x-1} + \frac{3x-6}{(x-1)^2} Ln(x)\right)$$

Theoretical estimate

$$\mathcal{BR}(B_d \to \gamma \nu \bar{\nu}) \sim \times 10^{-9}$$

$$\mathcal{BR}(B_s \to \gamma \nu \bar{\nu}) \sim \times 10^{-8}$$

Experimental Bound

$$\mathcal{BR}(B_d \to \gamma \nu \bar{\nu}) < 4.7 \times 10^{-5}$$

B to γ + Missing energy

$$B \to \gamma + \mathcal{U}$$

$$|\overline{\mathcal{M}}|^2 = 2(k \cdot q)^2 (\frac{g}{M})^2 (\frac{C_V}{M})^2 \frac{1}{\Lambda^{2d-6}} \frac{4\pi\alpha}{m_B^2} \left(F_V^2(q^2) + F_A^2(q^2)\right)$$

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{A_{d\mu}}{8\pi^2 m_B} \frac{E_{\gamma} \ \theta(m_B^2 - 2m_B E_{\gamma} - \mu^2)}{(m_B^2 - 2m_B E_{\gamma} - \mu^2)^{2-d\mu}} \ |\overline{\mathcal{M}}|^2$$

B to γ + vector Unparticle

Dependence of the branching ratio on M and Λ in GeV

M

Invisible Decay of Z boson

Effective interaction

$$\mathcal{L} = \frac{\Lambda^{3-d}}{M^2} H^{\dagger} D_{\mu} H \mathcal{U}^{\mu} \sim \frac{\Lambda^{3-d}}{M^2} \frac{v}{2} M_Z Z_{\mu} \mathcal{U}^{\mu}$$

The decay rate of Z into vector Unparticle is

$$\Gamma(Z \to \mathcal{U}) = \frac{v^2 A_d}{8M_Z} \left(\frac{M_Z}{\Lambda}\right)^{2d-6} \left(\frac{M_Z}{M}\right)^4$$

Bounds on M from effective contact interactions

$$\mathcal{L} = \frac{c}{M} |H^{\dagger} D_{\mu} H|^2$$

 $M > 4.6 \ TeV \ for \ c = -1$ and $M > 5.6 \ TeV \ for \ c = 1$

Invisible Decay of Z boson

New physics contribution to invisible Z decay is severely constrained

 $\Gamma^{SM}(Z \to invisible) = 501.65 \pm 0.11 \ MeV$

 $\Gamma^{Exp.}(Z \rightarrow invisible) = 499.0 \pm 1.5 \ MeV$

Invisible Decay of Z boson into Vector Unparticle

Conclusion

- •We have studied missing energy signals in the b to s FCNC transition in B to K + missing energy and B to gamma + missing energy.
- •These channels cannot be used to constrain vector Unparticle because the branching ratios are very small for reasonable values of parameter space
- High energy probes as in Z decay are also very suppressed
- Unparticles as sub classes of hidden valleys, HEIDI, Infraparticle, self interaction, gauged unparticles
- More studies are needed for models that are scale invariant but not conformal invariant