Generalizing the Method of Kinematical Endpoints

Michael E. Burns University of Florida Advisor: Konstantin Matchev Fellow grad student: Myeonghun Park

2008 April 28

The cascade decay

- B, C, D heavy particles; A unobservable
- observe q, l^+ , l^- to determine m_A , m_B , m_C , m_D

Parameter space

constant R_C slice

The endpoint method

- $p_D = ?$, $p_A = ? \longrightarrow$ cannot use resonances
- single invariant mass distributions (histograms): m_{ll} , m_{qll} , m_{qll} , m_{qll} , m_{qll} , m_{qll}

- m_{ll}^{\max} , m_{qll}^{\max} , m_{ql}^{\max} 's $\longrightarrow R_A$, R_B , R_C , m_D
- DUPLICATE SOLUTIONS CAN OCCUR
- use 2-variable distributions (scatter plots) to resolve the ambiguity
 - more features: endpoints extended to boundary lines

$(m_{qll})^2$ vs. $(m_{ll})^2$ boundary lines

- vertical boundary is $(m_{ll}^{\max})^2$
- $(m_{qll})^2$ intercept is always available
- intersections of vertical boundary with curved boundary provide two more equations

$$\left(\frac{m_{ll}}{m_D}\right)^2 = R_C (1 - R_A)(1 - R_B)$$

$$\left(\frac{m_{qll}}{m_D}\right)^2 = \frac{1}{2}(1 - R_C)(1 - R_A R_B) + \frac{1 + R_C}{2R_C} \left(\frac{m_{ll}}{m_D}\right)^2$$

$$\pm \frac{1 - R_C}{2R_C} \sqrt{\left(R_C (1 - R_A R_B)\right)^2 - 2R_C (1 + R_A R_B) \left(\frac{m_{ll}}{m_D}\right)^2 + \left(\frac{m_{ll}}{m_D}\right)^4}$$

$(m_{qll})^2$ vs. $(m_{ll})^2$ phase space simulation

- simulation confirms boundary lines
- curved boundary same for every parameter point on hyperbola
- exchanging $R_A \leftrightarrow R_B$ gives same distribution . . . duplication remains

 $(m_{qll})^2$ vs. $(m_{ll})^2$ phase space simulation

- If parameter point slides along hyperbola to $R_A = R_B \dots$
- . . . then vertical boundary slides toward apex of curved boundary

 $(m_{qll})^2$ vs. $(m_{ll})^2$ phase space simulation

- In the "offshell" region of parameter space, there is no vertical boundary.
- In fact, in the "offshell" region of parameter space, neither R_A nor R_B can, in principle, be determined based on kinematics alone; only the product $R_A R_B$ can be determined based on kinematics.

$$(m_{ql_{far}})^2$$
 vs. $(m_{ql_{near}})^2$ boundary lines

- vertical boundary is $(m_{ql_{near}}^{\max})^2$
- negatively sloped upper boundary is $(m_{ql_{far}}^{\max})^2$ given $(m_{ql_{near}}^{\max})^2$
- distribution assumed to be unobservable
- plot divided into two areas based on which m_{ql} is larger

$$\left(\frac{m_{ql_{near}}}{m_D}\right)^2 = (1 - R_B)(1 - R_C)$$
$$\left(\frac{m_{ql_{far}}}{m_D}\right)^2 = (1 - R_A)(1 - R_C) - (1 - R_A)\left(\frac{m_{ql_{near}}}{m_D}\right)^2$$

$$\{m_{ql_{near}}, m_{ql_{far}}\} \to \{m_{ql(low)}, m_{ql(high)}\}$$

$$m_{ql(low)} \equiv \min[m_{ql_{near}}, m_{ql_{far}}]$$

$$m_{ql(high)} \equiv \max[m_{ql_{near}}, m_{ql_{far}}]$$

Folding across $(m_{ql(eq)})^2$

- simulation confirms boundary lines
- featureless horizontal upper boundary $\Rightarrow R_A > R_B$

- simulation confirms boundary lines
- featureless negatively sloped upper boundary

$$\Rightarrow R_B > R_A$$

- simulation confirms boundary lines
- featured upper boundary $\Rightarrow R_B > R_A$

• In the "offshell" region of parameter space the simulation exhibits no features.

Experimental considerations

- $\frac{P(E)}{2}$ $\frac{P_{max}}{M \frac{\Gamma}{2}} \qquad M \qquad M + \frac{\Gamma}{2}$
- finite width

• detector effects

- combinatorics
- backgrounds

• spin

Conclusion

- The unknown masses in the cascade decay cannot always be determined from the endpoints of the invariant mass distributions alone.
- Additional features in the invariant mass distributions can be recognized, and the 2-variable distributions exhibit these features in a straightforward way.
- We do not yet know how these features can be extracted from realistic data.