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Motivation

If our current particle picture of Dark Matter is correct, the LHC is
likely to be a Dark Matter factory. Realistic models containing a Dark
Matter particle tend to be very similar.

• A symmetry is added to keep Dark Matter stable → Dark Matter
is produced in pairs.

• Symmetries which keep Dark Matter stable are often taken from
other sources (because we prefer as simple a model as possible),
such as:

{ Proton Stability (R-Parity in SUSY)

{ Custodial Symmetry (solving Little Hierarchy Problem)

{ 5D momentum conservation (KK number conservation in UED)

\Other Sources" for the symmetry generically means \Other Par-
ticles".



Polynomial Systems

Cross Sections as Probability Densities:

What are we actually measuring? Let us de�ne a probability distri-

bution for an event. A cross section generally is given by
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is a zero-dimensional projection of a high-dimensional phase space,

and contains very little information! Buried in here somewhere is all

the information that is to be had. Let us do a little rearrangement

to retain all information in the high-dimensional space.
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this is a probability density expressing the probability of a particular

con�guration of momenta. For N external particles, it is a 3N − 4

dimensional space.
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In principle, one could directly compare this PDF (Probability Density

Function) between simulated events and data. But, high-dimensional

spaces require a lot of data to map out.

• Project onto lower dimensional space (e.g. Breit-Wigner, end-

point/edge techniques)

• Use a Likelihood or \Matrix Element" method

The Neyman-Pearson lemma tells us that the most powerful statis-

tic for di�erentiating two hypotheses λ and λ′ is the ratio of two

Likelihoods. Our Likelihood is

L(λ|{pµi }) =
N∏
i=1

P (p
µ
i |λ).
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In a Collider with missing energy, the PDF is de�ned as
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Now let us go into the narrow width approximation by replacing
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∣∣∣2, for some hypothesis diagram.
Alternatively, one can simply insert the appropriate delta functions

corresponding to a diagram, and view this as a variable change.

Note that this integral is 4 dimensional at a hadron collider. There-

fore, by specifying 4 masses, the integral is reduced to a discrete set

of solutions for the missing momenta.

A pair of simultaneous quadratics is not guaranteed to have a solution!



Combining Events: our method

Given the decay ~q~q → qχ0
2
qχ0

2
→ ql~lql~l → qllχ0

1
qllχ0

1
(as occurs in SPS

1a):

This process is underconstrained by 2. There are 4 kinematic un-
knowns and 6 unknown intermediate masses. So, not enough con-
straints to solve simultaneously for the masses and the kinematic
unknowns in one event.

But, under the assumption that the masses are the same on both
sides of the event, and the same between two events, one can solve
for the masses using a pair of events.

This is equivalent to asking: Is the 2-particle likelihood, in the narrow-
width approximation zero or non-zero?

L2 = P1({pi}1|{Mj})P2({pi}2|{Mj})

Naively this gives 4 quadratic equations. However one can use instead
three quadratics by relating momenta p2

1
= p2

2
.

Another nice way to think of this is doing OSET's backwards.



Event Pair Topology



Constraint Equations
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Ideal Masses (without combinatorics)
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Application of Realism

• Combinatorics: There are 16 choices of where to assign the lep-

tons/jets per event for 4µ or 4e, or 8 for 2µ2e. Combinatorics are
fundamental and must be taken into account. There is no magic

cut which gets rid of them. Combinatorics also carry information

about mass.

• Backgrounds: This signal has no real SM background. We include

all SUSY backgrounds including τ̃ decays and χ̃0
2
not from squark

decay, and g̃ events (which have extra hard jets).

• Finite widths: �q̃ = 5 GeV, �χ̃0
2

= 20 MeV, �˜̀
R
= 200 MeV.

• Mass splitting: Di�erent 
avor squarks have di�erent masses by

6 GeV. Therefore, our squark mass result is an average of these

signals.

Note that these techniques work with very few events (e.g. ten).



Ideal Masses (with combinatorics)
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Application of Realism

We simulate all events with ATLFAST running in high-luminosity

mode. We assume 300 fb−1 of luminosity. We require

• 4 isolated (�R < 0.4) leptons with pT > 10 GeV, |η| < 2.5.

(
avors, charges chosen to match our χ̃0
2
→ ˜̀→ χ̃0

1
topology.

• no b-jets and ≥ 2 jets with pT > 100 GeV, |η| < 2.5. The high-

est pT jets are taken to be particles 7,8 (extra jets from parton

shower/reconstruction are present).

• Missing pT > 50 GeV.



Absolute Masses
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Extra Cuts

We add new cuts to improve S/B and decrease bias

• We require that each combination c in each event i have solutions

with some combination in 75% of the other events. Npair(c, i) <

0.75Nevents

• We weight the �nal histogram by 1/N where N is the number of

solutions in a given pair.

• We cut on the mass di�erences (window de�ned by 0.6 of peak

height { e.g. Full Width at 0.6 Max)

There are many other interesting manipulations one can do, that are

quite di�erent from cutting on physical observables.



Mass Di�erences in SPS1a
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Absolute Masses SPS1a (cuts on �M)
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Results

We �t peaks using a gaussian+quadratic polynomial, and use the

maximum as our mass estimator. This is a biased estimator, but

can be used to estimate our statistical error by repeating the mea-

surement. Using 10 independent sets of Monte Carlo, for the SPS1a

point with masses {91.7,135.9, 175.7 558.0}

mN = 94.1± 2.8GeV,
mX = 138.8± 2.8GeV,
mY = 179.0± 3.0GeV,
mZ = 561.5± 4.1GeV.

(3)

There are 539 signal + 195 background events in this sample after

all cuts.

Precision is degraded by our \bias reduction" procedure. This is

great for getting the mass within 5% very quickly (without scanning

in masses), but �nal errors using these techniques is about a factor

2 better.



How to apply this to other processes

We used 300 fb−1 to make contact with other SPS1a studies, but

this works with as few as 1 event.

Unknown R Missing M Events Quadratics Solutions

4 2 ∞ (*) 2 0
5 2 3 5 32
6 2 4 6 64
7 2 4 7 128
8 2 5 8 256
7 3 ∞ (*) 3 0
8 3 5 13 8192
9 3 5 14 16384

The assumption that two resonances in an event have the same

mass and known resonances (Such as MW , Mt) reduce the num-

ber of quadratics/events needed. Each event contributes 3M − 2

unknown mising momenta and generates M quadratics in R+ 1 un-

known masses. One quadratic is always redundant.

* See Cheng, Gunion, Han, Marandella, McElrath JHEP 0712:076,2007



Summary

We really can make plots of mass!

Breit-Wigners appear in plots of mass, and the appearance of a Breit-

Wigner is real proof of a new particle. Edges/slopes are far less

convincing that one has discovered a new particle and not a detector

e�ect (or a misinterpretation of a resonance as an edge!)

These techniques can be thought of as answering: Is the N-particle

narrow-width likelihood LN zero or non-zero?

These techniques require ≥ 4 resonances for 2 missing particles, or

≥ 7 resonances for 3 missing particles.

These techniques use all available data, (including missing pT ) and

automatically take into account the fact that there are multiple so-

lutions and combinatorics.

If the signal nature presents us is compatible with these requirements,

this is really the the best, unambiguous variable to use.


