What we know from missing pt

Graviton production with 2 jets in Large Extra Dimensions at LHC

PHENO'08 - Madison 28 April 2008

Partha Konar University of Florida

JHEP 0804:019,2008

In a work with: K. Hagiwara, Q. Li, K. Mawatari, D. Zeppenfeld

- $(4 + \delta)$ dimensional theory with extra δ dimension(s) which are compactified (with radius R).
- Standard Model fields are confined on (1+3)- dimensional brane though gravity can propagate anywhere in the $(4 + \delta)$ dimensional bulk.
- Our 4 dimensional Planck scale (M_p) is related to the $(4 + \delta)$ dimensional Planck scale (\overline{M}_s) which is actually fundamental scale in this scenario.

$$M_p^2 = 8\pi . V_\delta R^\delta \times \bar{M}_s^{\delta+2}$$

Volume element $V_{\delta} = (2\pi)^{\delta}$ assuming toroidal compactification of extra dimensions.

• By choosing large R (exp. limit $\approx \# mm$), fundamental scale $(\overline{M}_s \sim 1 \, TeV)$ can produce the Planck scale $(M_p \sim 10^{19} GeV)$ in 4 dimension. Adelberger [EOT-WASH Group]

- δ compact extra spatial dimensions \Rightarrow Infinite tower of Kaluza-Klein states with masses $\vec{n} = (n_1, n_2, \dots n_{\delta})$ $m_n^2 \sim \frac{\vec{n}^2}{B^2}$
- Two types of large extra dimension signals :
- Virtual graviton exchange : \Rightarrow Coherent sum \Rightarrow affecting the S.M. signal: g_{KK}

 $n_i = 0, \pm 1, \pm 2, \dots$

- Real graviton emission :
 - \Rightarrow Incoherent sum
 - \Rightarrow missing energy-momentum.

We consider the second scenario

g_{KK}

 A widely studied channel for discovering ADD in LEP and Tevatron:

$$e^+e^- \to \gamma(Z) G_n \to \gamma(Z) E^{\text{miss}}$$

 $p\bar{p} \to \gamma(j) G_n \to \gamma(j) P_T^{\text{miss}}$

Note: γ is not monochromatic.

One can probe M_s upto 95% CL

LEP	Tevatron
1.60 TeV	1.18 TeV
1.20 TeV	0.99 TeV
0.94 TeV	0.91 TeV
0.77 TeV	0.86 TeV
0.66 TeV	0.83 TeV

 ∇

no of ex-dim(δ)		
for $\delta = 2$		
for $\delta = 3$		
for $\delta = 4$		
for $\delta = 5$		
for $\delta = 6$		

Mirabelli, Perelstein, Peskin [PRL82:2236,99] Giudice, Rattazzi, Wells [NPB544:3,99]

ADD Graviton with 2 jets @ LHC

Partha Konar, UF

• LHC : Graviton production with a monojet.

 $pp \to j G_n \to j P_T^{\text{miss}}$

- Strong ability to probe up to much higher extra dimension scale
- BUT, this single jet carry:
 - very little information on the underlying physics
 - transverse momentum and the rapidity of the single jet
 - additional jets in graviton production can be used as a more sophisticated probe.

Vacavant, Hinchliffe

jjG_n at LHC – Calculation

 \odot We studied whether the 2-jet rate and correlations can give us more information about the mass scale of the missing object, in addition to the missing P_T distribution.

 $pp \to jj G_n \to jj P_T^{\text{miss}}$

- QCD order α_s^2 production of $pp \rightarrow jjG_n$ includes
 - $qq^{(\prime)} \to qq^{(\prime)}G_n$
 - $gq \to gqG_n$
 - $gg \to ggG_n$
- As gravity couples to the energy-momentum tensor, each component of the tower of ADD gravitons couples to all SM fields, as well as to each SM interaction vertex —> significant number of Feynman diagrams in each channel.

 jjG_n at LHC – Calculation

 ∇

ADD Graviton with 2 jets @ LHC

Partha Konar, UF

jjG_n at LHC – Calculation

- Simulated at the parton level with full tree level matrix elements.
- Full calculation has been done numerically by using the helicity amplitude method.
- Implemented ADD spin-2 gravitons into MadGraph /MadEvent.
- Significant background can come from any processes leading to two jets and missing transverse momentum.
- Dominant background Zjj production with subsequent decay $Z \rightarrow \nu \bar{\nu}$.
- QCD production of Wjj with subsequent decay $W^{\pm} \rightarrow l^{\pm}\nu$ when the charged leptons $l = e, \mu, \tau$ are not identified. significant at least when missing P_T is not too large.

We follow the procedure of Eboli, Zappenfeld [PLB495:147,00]

- Throughout we follow the notation : Giudice et al.
- Differs from the one in Han *et al.* mainly by a different factor in the relation between R and M_s in $(4+\delta)$ -dimensional space.
- Though this factor is crucial in comparing results and quantifying discovery potentials, one can simply convert results from one notation to the other by multiplying a δ dependent factor.

jjG_n at LHC – Conventions and Cuts

- CTEQ6L1 parton distribution functions.
- Factorization scale chosen as $\mu_f = \min(P_T)$ of the jets
- QCD coupling is set to the geometric mean value,

 $\alpha_s = \sqrt{\alpha_s(P_T^{j_1}) \, \alpha_s(P_T^{j_2})}.$

- Focus on the $\delta = 4$ and $M_s = 5$ TeV.
- In the tree level numerical calculations, we identify massless partons with jets.
- $\Delta R_{jj} = \sqrt{\Delta \eta^2 + \Delta \phi^2} > 0.7$, $|\eta_j| < 4.5$
- $P_T^j > 6 \text{ GeV} \times \sqrt{P_T^{\text{miss}}/1 \text{ GeV}}$
- $P_T^{\text{miss}} > 1 \text{ TeV}$

 $\odot P_T^j$ cut dependence of dijet cross sections for $pp \rightarrow jjG_nX$ at the LHC in various P_T^{miss} bins. The open circles show the monojet cross section in the same missing P_T bin.

 \odot Missing transverse momentum dependence of the $P_T^{\rm cut}$ value of equal 2-jet and 1-jet cross sections. Our jet selection cut is also presented.

- For a missing P_T of 1 TeV, for example, gluons with $P_T \lesssim 140$ GeV are in the soft range, and several such "soft" gluon jets are expected.
- These gluons are readily observable as distinct jets in the experiment
- An actual monojet event with missing transverse momentum in the TeV range and no additional jets with $p_T \gtrsim 30$ GeV, is a very rare evention with 2 jets @ LHC Partha Konar, UF - p.4/

 $\odot P_T^{\text{miss}}$ dependence of the total cross sections for the signal and background

ADD Graviton with 2 jets @ LHC

Partha Konar, UF

– p.4/

 M_s dependence of the σ_{total} for jG_n and jjG_n at LHC.

- Integrated luminosity $\mathcal{L} = 100 \text{ fb}^{-1}$, where the systematic error in the background (assumed to be 10%) dominates over the statistical error.
- $\sigma_{jjG_n}(\sigma_{jG_n}) > 5 \times 10\% \times \sigma_{\text{background}} = 1.93 \ (2.45) \,\text{fb}$

jjG_n at LHC – Result

• Maximum ADD scale M_s sensitivity from 2-jet (1-jet) and missing transverse momentum signal at the LHC

No truncation	Hard truncation	no of ex-dim(δ)
6.4 (6.6) TeV	6.3 (6.5) TeV	for $\delta = 3$
5.6 (5.7) TeV	5.1 (5.5) TeV	for $\delta = 4$
5.2 (5.3) TeV	- (4.8) TeV	for $\delta=5$
4.9 (5.0) TeV	- (3.6) TeV	for $\delta = 6$

⊙ The 2-jet sensitivity is only slightly lower than for the 1-jet case. ⊙ The larger δ is, the sooner the non-perturbative region is reached, thus the larger is the difference between max M_s sensitivities in no truncation and hard truncation cases.

 ϕ_{jj} and $min(\phi_{j,ptmiss})$ distributions for background and signal.

- Zjj background shows a enhancement for back to back jets.
- Reflects collinear Z emission along one of the jets.
- Due to the heavier masses of the typical graviton KK modes, such collinear "jet fragmentation" contributions are absent for the signal.

jjG_n at LHC – Summery

- LHC can reveal graviton associated with jet(s). ADD graviton gives missing energy signature.
- To explore large extra dimensions at LHC, $pp \rightarrow jG_n$ is most sensitive channel, but is not a unique demonstration of ADD.
- Calculated the order α_s^2 graviton plus dijet, jjG_n at the LHC
- For P_T^{miss} of order 1 TeV or larger, the signature will rarely be a monojet signal.
- multiple "soft" gluon emission will produce events with several jets balancing the transverse momentum of the graviton
- The multijet features are simply a reflection of the hardness of the event P_T^{miss} .
- Saturates the leading order monojet cross section for additional "soft" jet P_T in the 100 to 150 GeV range, thus establishing the typical scale for multiple jet emission.
 ADD Graviton with 2 jets @ LHC

p.6/

jjG_n at LHC – Summery

- Defining the dijet cross section with a typical constant jet P_T cut, independent of the hardness of the event, will invariably lead to the cross section not being trustworthy at sufficiently high P_T^{miss} .
- ▲ Also studied *jjG_n* production via weak boson fusion -strongly suppressed, even with typical weak boson fusion cuts. → Weak Boson Fusion is not a promising process for Kaluza-Klein graviton production at the LHC.
- For missing P_T in the TeV range the Z mass becomes negligible and jet fragmentation into a collinear Z becomes an important part of the SM background: → Azimuthal angle correlations of the jets, with a sizable fraction of nearly back-to-back dijet events.
- Can provide a powerful tool to test for heavy graviton.

ADD Graviton with 2 jets @ LHC

Partha Konar, UF