

Pablo del Amo Sanchez LPNHE (Univ. Paris VI et VII) – IN2P3 – CNRS

Motivation

Ches .

- Rare decays: BFs ~ 10⁻⁵ 10⁻⁶
- Mainly $b \rightarrow s$ loop, $b \rightarrow u$ tree and $b \rightarrow d$ loop diagrams (hence good place to look for New Physics)
- Very rich phenomenology: large DCPV (direct CP violation),
 α, γ, loop β_{eff} vs tree β,
 Kπ asymmetry puzzle,
 B→VV polarization puzzle...
- Hence will show a (personal) selection of topics...

PHENO08 - Madison, 29th April 2008

Experimental issues

- Small S/B ratio, mostly continuum $(e^+e^- \rightarrow q\overline{q}, q \neq b)$ background
- Use kinematical and event-shape variables to discriminate:

$$m_{\rm ES} = \sqrt{(s/2 + \vec{p_i} \cdot \vec{p_B})^2 / E_i^2 - \vec{p_B}^2},$$

- m_{ES} ~ mass of B, good against continuum
- ΔE spots misreconstructed true B events
- L₂/L₀ ~ shape of event in CM frame

$$\Delta E = E_B^* - \sqrt{s}/2$$

Large DCPV: $B^+ \rightarrow K^+ \pi^+ \pi^-$

- $K\pi$ asymmetry pattern not well understood: look at ρK
- Rho wide \rightarrow overlaps with other resonances (e.g. f_{θ}) \rightarrow interference
- \rightarrow need Dalitz-plot analysis of $K^+\pi^+\pi^- \rightarrow$ fit relative magnitudes and rel. phases
- Sensitive to DCPV in decay rate asym. but also in relative phase asym.
- Sheds light on $\pi\pi$ spectrum: need $f_2(1270)K^+$ and scalar of mass m = 1479 ± 8 MeV, width $\Gamma = 80 \pm 19$ MeV (~ $f_0(1500)$?)

 $B^+ \rightarrow K^+ \pi^+ \pi^-$ (cont'd)

- Helps with (poorly known) $K\pi$ spectrum: $K_2^{*0}(1430)$ present, LASS best description of S-wave, but not perfect?
- $A_{CP}(K^{*0}\pi^+) \sim 0$ (as expected in SM); C

DCPV hint in $f_2(1270)$ K⁺

KK S-wave: $K^+K^-\pi^+ \& K^+K^-K^0$

• Recent observation of $B^+ \rightarrow K^+ K^- \pi^+$: BF = $(5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$

 $(429 \pm 43 \text{ events}, 9.6\sigma)$

- Broad peak at ~ 1.5 GeV/c² in KK mass
- No $\Phi \rightarrow$ peak not coming from $s\overline{s}$?

Scalars at ~ 1.5 GeV/c² also in $B^0 \rightarrow K^+K^-K^0$ and $B^+ \rightarrow K^+K^+K^-$: $m = 1539 \pm 20$ MeV, $\Gamma = 257 \pm 33$ MeV

 $B \rightarrow KKK$ modes dominated by non-resonant which is not uniform in phase space

 $B \rightarrow a_1 h \text{ and } \alpha$

- TD $B^0 \rightarrow a_1(1260)\pi$ measured $\alpha_{eff} = (78.6 \pm 7.3)^\circ$ (PRL98:181803)
- Loop diagram pollution $\rightarrow \alpha_{eff} \neq \alpha$
- Bound $\Delta \alpha = |\alpha \alpha_{eff}|$ from SU(3) (PRD73:057502)

 \rightarrow need BFs of $B \rightarrow a_1(1260)K$, $B \rightarrow K_1(1270)\pi$, $B \rightarrow K_1(1400)\pi$

• Observed $B^0 \rightarrow a_1(1260)^-K^+$ (5.1 σ), (PRL100:051803) $B^+ \rightarrow a_1(1260)^+K^0$ (6.2 σ)

$$\begin{aligned} \mathsf{BF}(\mathsf{B}^{0} \to \mathsf{a}_{1}(1260)^{-}\mathsf{K}^{+})\mathsf{x}\mathsf{BF}(\mathsf{a}_{1}^{-} \to \pi^{+}\pi^{-}\pi^{-}) &= \\ &= (8.2 \pm 1.5 \pm 1.2)\mathsf{x}10^{-6} \\ \mathsf{BF}(\mathsf{B}^{+} \to \mathsf{a}_{1}(1260)^{+}\mathsf{K}^{0})\mathsf{x}\mathsf{BF}(\mathsf{a}_{1}^{+} \to \pi^{+}\pi^{+}\pi^{-}) &= \\ &= (17.4 \pm 2.5 \pm 2.2)\mathsf{x}10^{-6} \end{aligned}$$

PHENO08 - Madison, 29th April 2008

- Phase between tree and loop diagrams in $B \rightarrow K\pi\pi$ is γ .
- γ from $K^{*+}\pi^- K^{*0}\pi^0$ interference in $K^+\pi^-\pi^0$ (CPS PRD74:051301 Cancel loop diagrams using isospin: & GPSZ PRD75:014002)

• $A_{ij} = \text{Amplitude} (B^0 \rightarrow K^{*i} \pi^j)$

•
$$\Sigma = A_{-+} + A_{00} \cdot \sqrt{2}$$

• angle between Σ and Σ is 2γ (in the absence of EW loop diagrams)

 \rightarrow need $|A_{ij}|$ and rel. phases ϕ , $\overline{\phi}$, $\Delta \phi$

 \rightarrow need Dalitz analysis of

 $B^+ \rightarrow K^+ \pi^- \pi^0$ and $B^0 \rightarrow K_S \pi^+ \pi^-$

PHENO08 - Madison, 29th April 2008

Conclusions

 BaBar is exploring many interesting topics in Charmless B decays:

Large DCPV: $B^+ \rightarrow K^+ \pi^+ \pi^-$ (3.7 σ in $\rho^0 K^+$)

scalar and NR in KK: $B^+ \rightarrow K^+ K^- \pi^+ \& B^0 \rightarrow K^+ K^- K^0$

 β_{eff} from $B^0 \rightarrow \rho^0 K_S$, $f_0 K_S$, ΦK^0 & high mass $K^+ K^- K^0$

 γ via CPS – GPSZ: B⁺ \rightarrow K⁺ $\pi^{-}\pi^{0}$, B⁰ \rightarrow K_S $\pi^{+}\pi^{-}$

...among many others!

PHENO08 - Madison, 29th April 2008

BACK UP SLIDES

PHENO08 - Madison, 29th April 2008

The BaBar experiment

- Asymmetric energies: boost $\beta \gamma = 0.56$
- $\sqrt{s} = 10.58 \text{ GeV}$ = m(Y(4S)) $\approx 2 \text{ m(B^0)}$ so e⁺e⁻ \rightarrow Y(4S) \rightarrow BB
- SVT: 100 μ m resolution in $\Delta z \sim \beta \gamma c \tau = 250 \ \mu$ m
- SVT: good eff for low p_t tracks
- PID from DIRC essential for tagging
- Belle experiment similar

The BaBar experiment

- Y(4S) data taking ended Dec 2007: ~ 465 M BB
- Have recorded ~ 30/fb on
 Y(3S) and ~ 15/fb on Y(2S)
- Routinely collect data 40 MeV below Y(4S) peak for background characterization

Ρ

 Finished running on 8th April

PHENO08 - Madison, 29th April 2008

As of 2008/04/11 00:00

$\rho^0 K^+$ DCPV significance

PHENO08 - Madison, 29th April 2008

"Dalitz" analysis

2 degrees of freedom in $B \rightarrow P_1 P_2 P_3$, usually $m_{P_1P_2}^2$ and $m_{P_1P_3}^2$. 3 daughters x 3 p comp - 4 (E, p conservation) - 3 Euler angles

Resonances, bands of constant m_{12}^2, m_{23}^2 or m_{13}^2 $Overlap \rightarrow interference$ \rightarrow sensitive to relative phase Observe intensity $|A|^2$, with $A \sim \sum c_i BW_i$ (Isobar)

c_i characterize model

- so $|A|^2 \sim c_k^* c_1 B W_k^* B W_1$
- k, l > 1 lift degeneracies

Ideal to measure phases!

PHENO08 - Madison, 29th April 2008

