Recent Results on Semileptonic *B D*ecays from BaBar

 $-B^{-} \rightarrow D^{*0}e^{-}\nu$ BF (branching fraction) and FF (form factor) slope $-B \rightarrow D^{(*)}(\pi)/\nu$ BF $-B \rightarrow D^{**}/\nu$ BF $-B \rightarrow X_{u}/\nu$ BF and $|V_{ub}|$

> PHENO 08, 04/29/2008 K. Hamano, University of Victoria

Semileptonic *B* decays and $|V_{xb}|$

- Ideal laboratory to measure CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$
- Experimentally accessible : BF ~ $10^{-1} 10^{-4}$
 - $B \rightarrow X_c I \nu$ decay rates $\propto |V_{cb}|^2 (X_c \text{ is a charmed meson system})$
 - $B \rightarrow X_u / \nu$ decay rates $\propto |V_{ub}|^2 (X_u \text{ is a non-charmed meson system})$
- Theoretically accessible
 - $B \rightarrow X_c l \nu$ decays \rightarrow HQET (Heavy Quark Effective Theory) can be applied with good precision.
 - $B \rightarrow X_u / \nu$ decays \rightarrow Since *u* quark is not heavy, QCD calculations are more challenging.

Inclusive decays : BLNP : B.O.Lange et.al. Phys.Rev.D72(2005)073006 DGE : J.R.Anderson et.al. JHEP 0601(2006)097 GGOU : P.Gambino et.al. JHEP 0710(2007)058

$B^{-} \rightarrow D^{*0}e^{-}\nu$ BF and FF (1)

arXiv:0712.3493v2[hep-ex] Submitted to Phys.Rev.Lett.

• $B \rightarrow D^* / \nu$ decay rate is proportional to the square of a FF (form factor) F(w) which can be expressed by a slope ρ^2 .

 $F(w) = F(1) [1 - \rho^2 (w - 1)]$

where w is the velocity transfer related to momentum transfer q^2

$$w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

Motivation

- In practice, more complicated CLN parameterization of F(w) was used (Nucl.Phys. B530 (1998) 153),
- $B^0 \rightarrow D^{*-}I^+\nu$ mode has already been measured. (BaBar : Phys. Rev. D77, 032002 (2008))

• $\rho^2 = 1.191 \pm 0.048 \pm 0.028$

- Event selection (205 fb⁻¹)
 - *e* momentum > 1.2 GeV
 - Reconstruct $D^{*O} \rightarrow D^O \pi^O$, $D^O \rightarrow K^- \pi^+$ and $\pi^O \rightarrow \gamma \gamma$
 - Energy of $\gamma > 30$ MeV

$B^{-} \rightarrow D^{*0}e^{-}\nu$ BF and FF (2)

- Results agree with previous BaBar measurements.
 - $\rho^2 = 1.16 \pm 0.06 \pm 0.08$
 - $F(1)|V_{cb}| = (35.9 \pm 0.6 \pm 1.4) \times 10^{-3}$
 - BF (branching fraction) = $(5.56 \pm 0.08 \pm 0.41)$ %

$B^{-} \rightarrow D^{*0}e^{-}\nu$ BF and FF (3)

HFAG (Heavy Flavor Averaging Group), http://www.slac.stanford.edu/xorg/hfag/

$B \to D^{(*)}(\pi)/\nu$ BF (1)

Motivation

Phys.Rev.Lett.100(2008)151802 (arXiv:0712.3503v1[hep-ex])

- Exclusive $B \rightarrow D/\nu$, $B \rightarrow D^*/\nu$ and $B \rightarrow D^{**}/\nu$ BF do not add up to inclusive $B \rightarrow X_c/\nu$ BF
- Existing B -> D^{*} Iv BF measurements show some disagreements.
- Simultaneously determine all three exclusive BF.
- Fully reconstruct one B_{tag} (efficiency 0.3-0.5 %) and look at the other B
- Event selection (341 fb⁻¹, 378 M $B\overline{B}$ pairs)
 - Do not explicitly identify D^{**} Reconstruct only D^{*}π and Dπ pairs
 -> measure inclusive B -> D^(*)π /ν BF

$B \to D^{(*)}(\pi)/\nu BF(2)$ $D^{(*)}(\nu)$

PHENO 08,

- Use missing mass squared PDF for fitting.
- Results of B^+ BF (in %) BF(D^0/ν) = 2.33 ± 0.09 ± 0.09 BF(D^{*0}/ν) = 5.83 ± 0.15 ± 0.30 BF($D^{(*)} \pi/\nu$) = 1.52 ± 0.12 ± 0.10
- Comparable accuracy to world average.
- Sum of exclusive BF is 11 ± 4 % smaller than inclusive BF(B⁻->X_cIν) = 10.8 ± 0.4 (%)

$B \to D^{**} / \nu BF$ (1)

- Motivation : Only BF(B -> D₁/v) and BF(B -> D₂*/v) are well measured.
 Measurement of D**/v BF and even higher mass states is crucial to understand missing portion of b->cl v decays
- Fully reconstruct one B and look at the other B + Missing mass squared cuts

$B \to D^{**} / \nu BF$ (2)

- Results (with isospin symmetry) (in %)
 - $BF(B > D_1^0 / \nu) = 0.42 \pm 0.04 \pm 0.04$
 - $BF(B > D_1'^0/\nu) = 0.47 \pm 0.06 \pm 0.06$
 - $BF(B > D_2^{*0}/\nu) = 0.29 \pm 0.05 \pm 0.03$
 - BF($B^{-} > D_0^{*0} / \nu$) = 0.52 ± 0.07 ± 0.06 (sum = 1.70 ± 0.12 ± 0.10)
- Agrees with $BF(B \to D^{(*)} \pi / \nu) = 1.52 \pm 0.12 \pm 0.10$
- $B \rightarrow D^{**}/\nu$ BF saturates $B \rightarrow D^{(*)}\pi/\nu$ BF (Not much space for non-resonant decays.)
- BF($B \rightarrow D_1 / \nu$) disagree with BELLE measurement (arXiv:0711.3252).

$B \rightarrow X_u / \nu BF \text{ and } |V_{ub}|$ (1)

- Experimentally challenging because of 50 times larger $B \rightarrow X_c / \nu$ background.
- Only limited phase space can be used to separate $B \rightarrow X_c / \nu$ background. For example, cuts on
 - M_x = invariant mass of the hadronic system
- Event selection (347 fb-1, 383 M $B\overline{B}$ pairs)
 - Fully reconstruct one *B* and look at the other *B*
 - Lepton momentum > 1 GeV
 - Charge conservation
 - Missing mass squared < 0.5 GeV to reduce $B \rightarrow X_c/\nu$ background.

arXiv:0708.3702v2[hep-ex] Accepted to Phys.Rev.Lett.

$B \rightarrow X_u / \nu BF \text{ and } |V_{ub}|$ (2)

- BF in region $M_x < 1.55$ GeV (Partial branching fraction): BF = (1.18 ± 0.09 ± 0.07 ± 0.01) × 10⁻³
- $|V_{ub}|$ in different frameworks updated by HFAG

```
(value \pm \exp err + \text{theory } err - \text{theory } err) :
```

BNLP : $|V_{ub}| = (3.74 \pm 0.18 + 0.33 - 0.28) \times 10^{-3}$

DGE : $|V_{ub}| = (4.56 \pm 0.22 + 0.30 - 0.30) \times 10^{-3}$

GGOU : $|V_{ub}| = (4.02 \pm 0.19 + 0.26 - 0.29) \times 10^{-3}$

$B \rightarrow X_u / \nu$ BF and $|V_{ub}|$ (3)

04/29/2008

PHENO 08, K. Hamano

Summary

- $B \rightarrow X_c / \nu$ decays and $|V_{cb}|$
 - $B^- \rightarrow D^{*0}e^-\nu$ measurement is a good cross check on the existing $B^0 \rightarrow D^{*-}/\nu$ measurement.
 - $B \rightarrow D^{(*)} \pi / \nu$ BF and $B \rightarrow D^{**} / \nu$ BF are measured in good precision.
 - Missing component (B -> D^(*) π π Iν?) need to be determined.
- $B \rightarrow X_u / \nu$ decays and $|V_{ub}|$
 - Improved precision from previous Babar measurement.
 - Keys to a better precision :
 - Better understanding of $B \rightarrow X_c / \nu$ background.
 - Better theoretical method of QCD calculation.

Backup : PDG 2007

- B⁺ Semileptonic BF (%)
 - $BF(B^- > D^0 I \nu) = 2.15 \pm 0.22$
 - BF $(B^{-} > D^{*0}/\nu) = 6.5 \pm 0.5$
 - BF $(B^- > D_1^0 / \nu) = 0.56 \pm 0.16$
 - BF($B^- > D^+ \pi^- l\nu$) = 0.52 ± 0.10
 - BF($B^{-} > D^{*+} \pi^{-} l \nu$) = 0.63 ± 0.15
 - $BF(B \to X/\nu) = 10.99 \pm 0.28$
 - BF $(B > X_c / \nu) = 10.8 \pm 0.4$
- B^o Semileptonic BF (%)
 - $BF(B^0 D^1 \nu) = 2.08 \pm 0.18$
 - BF($B^0 D^* / \nu$) = 5.29 ± 0.19
 - BF($B^0 \rightarrow D^0 \pi^+ / \nu$) = 0.32 ± 0.10
 - BF(B^{0} -> $D^{*0} \pi^{+}/\nu$) = 0.65 ± 0.15
 - $BF(B^0 X/\nu) = 10.33 \pm 0.28$
 - BF($B^0 X_c / \nu$) = 10.1 ± 0.4
- B⁺ / B⁰ Admixture Semileptonic BF (%)
 - $BF(B X / \nu) = 10.24 \pm 0.15$
 - BF $(B X_c / \nu) = 10.57 \pm 0.15$
 - $BF(B X_u / \nu) = 0.233 \pm 0.022$

Backup : HFAG (LP2007) BF

- Semileptonic BF (%)
 - $BF(B^0 D^1 \nu) = 2.09 \pm 0.18$
 - $BF(B^{0} > D^{*}/\nu) = 5.11 \pm 0.12$
 - BF($B(Admixuture) -> X/\nu$) = 10.24 ± 0.15
 - $BF(B^{0} X/\nu) = 10.33 \pm 0.28$
 - $BF(B^+ > X/\nu) = 10.99 \pm 0.28$

Backup : HFAG (LP2007) V_{cb}

- Exclusive mode
 - $B \rightarrow D^*/\nu$
 - $F(1) |V_{cb}| = (35.89 \pm 0.56) \times 10^{-3}, \ \rho^2 = 1.23 \pm 0.05$ (We can estimate $|V_{cb}| = (38.6 \pm 0.9_{exp} \pm 1.0_{theo}) \times 10^{-3}$ with $F(1) = 0.930 \pm 0.23$: J.Laiho et.al.,arXiv:0710.111)
 - $B \rightarrow D l \nu$
 - $G(1)|V_{cb}| = (42.3 \pm 4.5) \times 10^{-3}, \ \rho_D^2 = 1.17 \pm 0.18$
- Inclusive mode
 - Kinematic Scheme : $|V_{cb}| = (41.68 \pm 0.39 \pm 0.58) \times 10^{-3}$
 - 1S Scheme : $|V_{cb}| = (41.56 \pm 0.39 \pm 0.08) \times 10^{-3}$

Kinetic Scheme : P. Gambino et.al. Eur. Phys. J. C34 (2004) 181 D. Benson et.al. Nucl. Phys. B710 (2005) 371 1S Scheme : C. W. Bauer et.al. Phys. Rev. D64 (2001) 113004

Backup : HFAG (Update for PDG2008) V_{ub}

- Inclusive mode
 - BLNP : $|V_{ub}| = (3.99 \pm 0.14 + 0.35 0.27) \times 10^{-3}$
 - DGE : $|V_{ub}| = (4.48 \pm 0.16 + 0.25 0.26) \times 10^{-3}$
 - GGOU: $|V_{ub}| = (3.94 \pm 0.15 + 0.20 0.23) \times 10^{-3}$
- Exclusive mode
 - $B \rightarrow \pi / \nu$

```
Ball-Zwicky : |V_{ub}| = (3.38 \pm 0.13 + 0.56 - 0.37) \times 10^{-3}
(Phys.Rev.D71(2005)014015)
```

- HPQCD : $|V_{ub}| = (3.47 \pm 0.20 + 0.60 0.39) \times 10^{-3}$ (Phys.Rev.D73(2006)074502)
- FNAL : $|V_{ub}| = (3.69 \pm 0.21 + 0.64 0.42) \times 10^{-3}$ (Nucl.Phys.Proc.Suppl.140(2005)461)
- APE : $|V_{ub}| = (3.72 \pm 0.21 + 1.43 0.66) \times 10^{-3}$ (Nucl.Phys.B619(2001)565)

Backup : HFAG (Update for PDG2008) BF

PHENO 08, K. Hamano

Backup : Fully reconstructed B and m_{ES}

- For fully reconstructed B (B_{reco}), to separated signal from background, we use
 - Beam energy substituted mass :

 $m_{\rm ES} = \operatorname{sqrt}(s/4 - \rho_B^2)$ Signal (a) (b) Signal (a) (c) Signal (c) Signa) Signal (c) Signal (c) Signa) Signa) Signa (c) Signa) Signal