QCD Reummation for Heavy Quarkonium Production in High Energy Collisions

> Zhongbo Kang Iowa State University

PHENO 2008 SYMPOSIUM Madison, Wisconsin, Apr 28-30, 2008

based on work with J. -W. Qiu

NRQCD approach for quarkonium production

$$\begin{split} \sigma(pp \to H + X) &= \sum_{i,j,n} \int dx_1 dx_2 \phi_{i/p}(x_1) \phi_{j/p}(x_2) \hat{\sigma} \left[ij \to (Q\bar{Q})_n \right] \langle O_n^H \rangle \text{ Braaten, Bodwin, Lepage 1995} \\ \hat{\sigma} \left[ij \to (Q\bar{Q})_n \right] : \text{ production of } Q\bar{Q} \text{ state with quantum number } \mathbf{n}, \text{ calculable in pQCD} \\ \text{ as a expansion of } \alpha_{\mathbf{s}} \\ \langle O_n^H \rangle : \text{ can be expanded in powers of } \mathbf{v}^2 \end{split}$$

Comparison with Tevatron data based on LO formula

NLO contributions

Scale dependence of the cross section

Scale dependence of the ttbar cross section at NLO

With NLO correction included, scaledependence is strongly reduced

Bonciani, Catani, Mangano, Nason, NPB529 (1998) 424

\Box Scale dependence is still large for J/ ψ at NLO: large NLO corrections

Why NLO contribution is LARGE?

Apr 29, 2008

Zhongbo Kang, ISU

Large logarithmic contributions

□ NNLO

 $\alpha_s^4 \frac{1}{P_T^4} \cdot \left(\alpha_s \ln \left[\frac{P_T^2}{m^2} \right] \right)$

To have a stable perturbative expansion, one need resum all the large logarithms: resummation

□ Same large log contribution for color-octet channels

New factorized formula with QCD resummation

Fragmentation contributions E. Braaten, et.al., 1993

$$\sigma^F(pp \to H + X) = \sum_{i,j,k} \int dx_1 dx_2 dz \phi_{i/p}(x_1) \phi_{j/p}(x_2) \hat{\sigma} [ij \to k] D_{k \to H}(z)$$

 $D_{k \to H}(z)$ resums all the logarithms. This is the dominant contribution when $P_T^2 >> m^2$

Q: What is the relation between fragmentation contribution and fixed order results in NRQCD?

 $P_T^2 \sim m^2$: $\sigma \approx \sigma^{Pert}$ calculated by fixed order NRQCD. Logarithms are not important

 $P_T^2 \gg m^2: \ \sigma pprox \sigma^F$ Logarithms dominate / resummed

- How to transform smoothly between these two regimes?
- How to avoid double counting beyond LO?

□ We propose a new factorized formula:

 $\sigma = \sigma^{Dir} + \sigma^{F} \quad \text{resum all the fragmentation logs}$ $\sigma^{Dir} = \sigma^{Pert} - \sigma^{Asym} \quad \text{No logs}$

separation between Direct and Fragmentation contribution depends on the definition of fragmentation function $D(z, \mu^2)$

Fragmentation function $D_{q \rightarrow J/\psi}(z_f, \mu^2)$

• Operator definition for $D_{q \rightarrow J/\psi}(z_f, \mu^2)$

$$D_{k \to H}(z_f, \mu^2) = \underbrace{\sum_{k=2}^{P} \sum_{k=2}^{T(k, P)} = \int_{k^2 \le \mu^2} \frac{d^4k}{(2\pi)^4} \frac{z_f^2}{4k^+} \delta(z_f - \frac{P^+}{k^+}) \operatorname{Tr}\left[\gamma^+ T(k, P)\right]}_{k}$$

Calculation of leading order fragmentation function: $D^{(0)}_{q \rightarrow J/\psi}(z_f, \mu^2)$

Evolution equation of $D_{q \rightarrow \psi}(z_f, \mu^2)$: inhomogeneous term

$$\mu^2 \frac{d}{d\mu^2} D_{q \to J/\psi}(z_f, \mu) = \gamma_{q \to J/\psi}(z_f, \mu) + \frac{\alpha_s}{2\pi} \int_{z_f}^1 \frac{d\xi}{\xi} P_{q \to q}\left(\frac{z_f}{\xi}\right) D_{q \to J/\psi}(\xi, \mu) + \cdots$$

$$\gamma_{q \to J/\psi}(z_f, \mu) = \frac{\alpha_s^2}{36m^3} \langle O_8({}^3S_1) \rangle \left[\frac{(z_f - 1)^2 + 1}{z_f} - \frac{4m^2}{\mu^2} \right] \theta \left(\mu^2 - \frac{4m^2}{z_f} \right)$$

Apr 29, 2008

Zhongbo Kang, ISU

Case study: $e^+e^- \rightarrow J/\psi + q\bar{q}$

NRQCD perturbative results

 \Box How to identify the logarithms before the full calculations $\longrightarrow \sigma^{Asym}$

Zhongbo Kang, ISU

Smooth transition

Hadronic collisions - in progress

□Fragmentation contribution:

Stay tuned

We proposed a QCD resummed factorization formula for heavy quarkonium production

We reorganized the perturbative series of NRQCD calculation

□ New formula is reliable for a wide range of collision energy