Isajet-M and Unified analysis of SUSY GUTs Analyzing flavor & neutrino sectors with full running

Ali Soleimani

University of Kansas

Pheno 2008 - April 29, 2008

Outline

1 Analyzing Field Theories at Multiple Scales

2 Isajet-M Architecture

3 Results

4 Future work

We want to analyze SUSY GUTs in conjunction with low-scale data.

- We know masses, couplings, etc. at a low scale.
- We know coupling constants unify at some high scale.
- Generally, we have some ansatz for Yukawas, SSB parameters, etc. at the high scale.
- They are connected by the RGEs.
- So... we have a set of ODEs with mixed boundary conditions.

Approximations for the RGEs

RGEs are commonly solved in...

1 The dominant third-family approximation.

- This assumes $Y_{ij} \approx \delta_{i3} \delta_{j3}$.
- Captures largest effect in quark sector.
- 2 The diagonal approximation.
 - Assumes $Y_{ij} \approx \text{diag}(y_{11}, y_{22}, y_{33})$
 - Better: the quark sector is approximately diagonal
 - But the lepton (neutrino) sector is not
- 3 Full three-family matrix couplings.
 - Treats all Yukawas in full generality

Difficulties with Matrix RGEs

The number of parameters is greatly multiplied:

- 3 Yukawa matrices eg y_{uij}
- 3 trilinear coupling matrices h_{uij}
- 5 mass-squared matrices $m_{\tilde{u}}^2$, $m_{\tilde{O}}^2$, etc
- 1 Yukawa matrix y_{ν ij}
- **1** trilinear coupling matrix $h_{\nu ij}$
- 1 right-handed neutrino mass matrix $M_{\nu_{rij}}$
- 1 mass-squared matrix $m_{\tilde{\nu}_{ii}}^2$
- **1** effective coupling matrix $\hat{\kappa}_{ij}$
- A total of $16 \times 9 = 144$ matrix parameters.

Basis issues

Current Codes

Several codes exist to solve the SUSY β -functions:

- SuSpect
- SoftSUSY
- SPheno
- Isajet
- REAP
- Isajet-M

Only SoftSUSY handles full three-family couplings. Only REAP handles the neutrino sector properly. We want a code that does *all* of this.

What can we do with Isajet-M?

Flavor analysis

- CKM constraints
- **FCNC** constraints, $b \rightarrow s \gamma$
- 2 Neutrino sector
 - Neutrino mass splittings, mixings
 - Neutrino phases
- 3 Leptogenesis
- 4 Effects of neutrino RGEs on e.g. $\Omega_{\tilde{Z}_1}$ (cf. Barger, Marfatia, Mustafayev 2008)

Example Application Bimaximal mixing

Figure: With Y_{ν} diagonal at the GUT scale, we see that θ_{12} runs significantly, while the other angles do not. Here we obtain bimaximal mixing at the GUT scale.

- 1 Impose boundary conditions at M_Z
- 2 Run up to M_{GUT}
- Impose GUT-scale boundary conditions
- 4 Run down to M_{SUSY}
- 5 Calculate $|\mu|$ and SUSY spectrum
- 6 Run back down to MZ
- Repeat until convergence.

Isajet-M Inputs

We take the following paramters as inputs:

- SUSY model and parameters
 - **mSUGRA:** $m_0, m_{1/2}, A_0, \tan \beta, \operatorname{sgn}(\mu)$
- 2 SM particle masses and mixings
- 3 Higgs vev
- 4 Right-handed neutrino Majorana mass matrix M_N
- 5 Neutrino Yukawa matrix Y_{ν}

Isajet-M Outputs

We calculate the following quantities:

- Sparticle spectrum
- Higgs masses
- Decay widths and branching fractions
- Neutrino masses and mass splittings
- Neutrino mixing angles (and phases)
- $\Omega_{\tilde{Z}_1}h^2$, $\mathsf{BF}(b \to s\gamma)$, $(g-2)_{\mu}$, $\sigma(\tilde{Z}_1 \rho)$, $\mathsf{BF}(B_s \to \ell \bar{\ell})$.

Low-scale boundary conditions

Boundary conditions at M_Z :

- Use measured masses, v, and V_{CKM} to find Y_e , Y_u , Y_d
- We run in \overline{DR} , so first:
 - Run masses to M_Z in 3-loop QCD plus 2-loop QED \overline{MS} .
 - Apply finite threshold corrections
 - Convert from MS into DR
- Run from M_Z to m_{top} .
- Correct *Y*_{top} at *m*_{top}.

High-scale boundary conditions

Boundary conditions at M_{GUT} :

- *M*_{GUT}, determined by gauge unification
- Soft SUSY-breaking parameters:
 - Universal gaugino, scalar masses
 - Universal trilinear couplings

 $\blacksquare M_{\nu_r}, Y_{\nu}$

Decoupling

- Particles only contribute to RG evolution when they are kinematically accessible.
- At scales below their mass, they do not contribute.
- We change RGEs at mass thresholds:
 - Sparticles
 - 2 Higgs, top quark
 - 3 Right-handed neutrinos
- Isajet includes finite threshold corrections for sparticles (but not right-handed neutrinos.)
- But these threshold corrections are all applied at M_{SUSY}

EFTs and the κ Matrix

Seesaw formula not valid below seesaw scale

$$m_
u = rac{v^2}{2} Y^\dagger_
u M_{N_R}^{-1} Y_
u$$

- Right-handed neutrinos are decoupled and do not appear
- But evolution of ν_l is significant
- Use an EFT
- After integrating out each ν_r, replace it with an effective mass operator κ

EFTs: Diagram

Figure: The effective operator κ and its Feynman rule

Diagram from Antusch et al.

Decoupling Procedure

Neutrino Sector

- **1** Run down from M_{GUT} to largest M_{ν_R} eigenvalue.
- 2 (n.b. this eigenvalue runs.)
- **3** Rotate into mass eigenbasis (diagonalizing M_{ν_R}).
- **4** Zero this row/col of M_{ν_R} and this row of Y_{ν} .
- **5** Create the appropriate entries in κ .

Neutrino sector comparisons

- We compare Isajet-M to REAP.
- REAP is not a full-fledged code:
 - Doesn't search for unification
 - All parameters must be specified at the high scale
- So, run Isajet-M on a given input
- Extract relevant parameters at M_{GUT}
- Enter them into REAP, compare results

Figure: SPS 1b point, atmospheric angle

Figure: SPS 1b point, θ_{13}

Figure: θ_{13}

Figure: $\delta m_{\rm solar}^2$

Figure: $\delta m_{\rm atm}^2$

Neutrino mass/mixing comparison

SPS1a:

010101						
Code	θ_{12}	θ_{13}	θ_{23}	$m_{\nu 1}$ (eV)	$m_{\nu 2}$ (eV)	$m_{\nu 3}$ (eV)
SPS1a						
Isajet-M	0.142	0.105	0.41	0.219	0.216	0.192
REAP	0.1406	0.1058	0.4136	0.2114	0.2081	0.185
SPS1b						
Isajet-M	0.166	0.089	0.341	0.219	0.215	0.187
REAP	0.1654	0.08962	0.3444	0.2109	0.2069	0.1806
SPS2						
Isajet-M	0.142	0.105	0.411	0.213	0.21	0.186
REAP	0.1403	0.106	0.4144	0.2045	0.2014	0.179
SPS3						
Isajet-M	0.14	0.106	0.416	0.218	0.214	0.191
REAP	0.1382	0.1071	0.4193	0.2097	0.2066	0.1838
SPS4						
Isajet-M	0.195	0.056	0.209	0.214	0.209	0.169
REAP	0.1945	0.05647	0.2108	0.2062	0.2009	0.1629
SPS5						
Isajet-M	0.138	0.107	0.419	0.21	0.207	0.184
REAP	0.1366	0.1079	0.4227	0.2034	0.2004	0.1784

Ali Soleimani (University of Kansas)

Comparison among codes

- At worst, we have a 5% difference from REAP.
- Similar differences exist for sparticle spectra among production codes:

Sparticle	Isajet	lsajet-M	Softsusy	Spheno	Suspect	(max-min)	diff[%]
χ_1^0	63.58	63.65	63.15	63.43	63.45	0.43	0.68
χ^0_2	116.63	116.4	116.92	117.00	117.09	0.46	0.39
χ^0_3	284.42	284.8	290.97	290.10	288.51	6.55	2.27
χ_4^0	305.78	306.5	307.15	306.56	307.57	1.79	0.58
χ_1^{\pm}	116.08	115.9	116.61	116.16	116.11	0.53	0.45
χ_2^{\pm}	304.50	305.3	305.92	308.77	308.55	4.27	1.39
\tilde{u}_L	397.88	397.94	394.65	398.50	397.19	3.84	0.97
ũ _R	388.28	388.38	387.80	388.56	387.43	1.13	0.29
$ ilde{ au}_1$	95.57	94.14	95.35	95.30	94.55	1.02	1.07
$ ilde{ au}_2$	154.54	151.31	155.18	154.98	154.59	3.23	2.1

 m_0 =80 GeV, $m_{1/2}$ =170 GeV, A_0 =-250 GeV, $\tan\beta$ = 10, μ > 0

Data from Kraml et al. automated comparison tool at http://cern.ch/kraml/comparison/.

KU KANSAS

Complex phases

Complex phases in Y_v can have enormous effect on the neutrino sector:

Figure 8: Highly non-linear running of θ_{12} and the Majorana phases in an example with large imaginary entries in the neutrino Yakawa matrix (see Eq. (2)). We used the MSSM with $\tan \beta = 10$, $M_{\rm USY} = 1$ TeV and the following initial conditions at $M_{\rm CVT} = 2 \cdot 10^{16} \text{GeV}$: $\theta_{12} = \theta_{23} = \pi/4$, $\theta_{13} = 0$, $\varphi_{1} = \pi/2$, $\varphi_{2} = 0$, normal hierarchy, $m_{2} = 0.05$, $m_{2}^{2} = 1.1 \cdot 10^{-4} \text{GeV}$.

They are unconstrainedWe are now complexifying Isajet-M

Searches in parameter space

- Goal: find models that match all observable data
- Simple ansatz at M_{GUT} for Y's, M_N
- Choose grid on parameter space, test points

- To analyze GUTs, we have to solve the β-functions with mixed boundary conditions.
- To understand flavor physics and neutrino mixings, we need to evolve the couplings in full matrix form.
- Future outlook
 - Analyze parameter space for various SUSY GUTs, looking for viable points.
 - Complexify and add analysis of baryogenesis/leptogenesis constraints.

R Dermisek and S Raby.

Bi-large neutrino mixing and CP violation in an SO(10) SUSY GUT for fermion masses.

Phys Lett B, 2005. hep-ph/0507045

S Antusch, J Kerseten, M Lindner, M Ratz, MA Schmidt. Running neutrino mass parameters in see-saw scenarios. *JHEP*, 2005. arXiv:hep-ph/0501272

S Antusch, M Drees, J Kersten, M Lindner, M Ratz. Neutrino Mass Operator Renormalization Revisited *Phys Lett B519*:238, 2001. arXiv:hep-ph/0108005

D Pierce, J Bagger, K Matchev, R Zhang. Precision corrections in the minimal supersymmetric standard model. *Nucl Phys B*, 1997. arXiv:hep-ph/9606211

