A New Extension of MSSM: FMSSM

S. Nandi

Oklahoma State University and Oklahoma Center for High Energy Physics

April 29, 2008

(in collaboration with Z. Tavartkiladze) arXiv: 0804.1996[hep-ph]

Goals

- ullet To explain why $m_b, m_ au \ll m_t$ in the framework of MSSM
- Higgs sector different from MSSM
 (ex. fermiophodic and gauge-phobic heavy Higgs sector)
 ⇒ seem like SM Higgs
- Extend the dark matter region allowed in usual MSSM
- Keep gauge coupling unification
- New interesting phenomenology at the LHC

- Consider 3rd family: \hat{q}_3 , \hat{u}_3^c , \hat{d}_3 , \hat{l}_3 , \hat{e}_3^c and two Higg doublet: \hat{h}_u , \hat{h}_d
- Usual MSSM Yukawa couplings

$$W = \lambda_t \hat{q}_3 \hat{u}_3^c \hat{h}_u + \lambda_b \hat{q}_3 \hat{d}_3^c \hat{h}_d$$

- Use R-symmetry so that $\lambda_b = 0$
- ullet Then, $m_t \sim$ tree level \sim EW scale
- m_b will be generated at 1-loop \sim few GeV

R charges:

$$\hat{q}_3, \hat{u}_3^c, \hat{e}_3^c \rightarrow 1$$
 $\hat{d}_3^c, \hat{l}_3, \hat{e}_3^c \rightarrow r$
 $\hat{h}_u \hat{h}_d \rightarrow 0$

With this assignment:

 $\hat{q}_3\hat{u}_3^c\hat{h}_u$: allowed

 $\hat{q}_3\hat{d}_3^c\hat{h}_d$: forbidden

How do we generate m_b, m_τ at 1-loop?

• Introduce vector-like quarks and leptons

$$(\hat{D}^c + \hat{\bar{D}}^c), (\hat{L} + \hat{\bar{L}})$$

R-charges $\hat{D}^c,\hat{\bar{D}}^c,\hat{L},\hat{\bar{L}} \to 1$

Additional superpotential

$$W' = \lambda_D \hat{q}_3 \hat{D}^c \hat{h}_d + \lambda_L \hat{L} \hat{e}^c \hat{h}_d + M_D \hat{D}^c \hat{\bar{D}}^c + M_L \hat{L} \hat{\bar{L}}$$

• Generate μ -term, $B\mu$ -terms and soft-SUSY breaking terms via higher-order operators

$$\int d^4\theta \frac{\hat{X}^\dagger}{M_{\rm Pl}} \hat{h}_u \hat{h}_d, \ \int d^4\theta \frac{\hat{X}^\dagger \hat{X}}{M_{\rm Pl}^2} \hat{h}_u \hat{h}_d, \ \int d^4\theta \frac{\hat{X}^\dagger \hat{X}}{M_{\rm Pl}} \hat{f}^\dagger \hat{f},$$

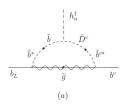
$$\int d^4\theta \frac{\hat{X}^\dagger \hat{Y}}{M_{\rm Pl}} \hat{D}^c \hat{d}_3^{c\dagger}, \quad \cdots$$

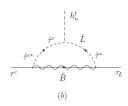
 $X, Y \rightarrow$ spurion superfields

$$\langle X \rangle = M_{\rm Pl} + \theta^2 m M_{\rm Pl}$$

 $\langle Y \rangle = M_{\rm Pl} + \theta^2 m M_{\rm Pl}$

R charges:
$$\begin{cases} X & \to 0 \\ Y & \to (r-1) \end{cases}$$


 \Rightarrow Gives potential term


$$\begin{aligned} |F_{h_d}|^2 &= |\lambda_D \tilde{q}_3 \tilde{D}^c + \lambda_L \tilde{L} \tilde{e}_3^c + \kappa \mu h_u|^2 \\ &\Rightarrow \mu \kappa (\lambda_D \tilde{q}_3 \tilde{D}^c h_u^\dagger + \lambda_L \tilde{L} \tilde{e}_3^c h_u^\dagger) \end{aligned}$$

Since SUSY is broken, the interactions

$$\lambda_b q_3 d_3^c h_u^{\dagger}, \quad \lambda_{\tau} l_3 e_3^c h_u^{\dagger}$$

are generated at the 1-loop level.

$$\Rightarrow \lambda_b q_3 d_3^c h_u^\dagger$$

$$\begin{split} \lambda_b &= \frac{\lambda_D \alpha_3}{4\pi} \frac{8}{3} \mu \kappa m_{\tilde{g}} \frac{m_{dD}^2}{m_{\tilde{q}_3}^4} I_q \\ \lambda_\tau &= \frac{\lambda_L \alpha_1}{4\pi} \frac{3}{5} \mu \kappa m_{\tilde{B}} \frac{m_{ll}^2}{m_{\tilde{e}_5}^4} I_I \end{split}$$

 $I_q, I_l \Rightarrow$ loop integrals \Rightarrow gives $\lambda_b, \lambda_{\tau}$ at the correct level if the SUSY and vector-like quark and lepton masses are at $\sim \text{TeV}$

Prediction ⇒ vector-like quarks and leptons at TeV scale

Higgs Sector

- Three neutral Higgs (h, H, A)
 - lightest is h
- charged Higgs (H^{\pm})

$$\mathcal{L}_{f_3 f_3 \phi} = \frac{m_t}{\sqrt{2} v s_{\beta}} \left[\overline{t} t (c_{\alpha} h + s_{\alpha} H) + \overline{t} i \gamma_5 t c_{\beta} A \right] + \text{bottom terms} + \text{tau terms}$$

$$\mathcal{L}_{f_3 f_3 H^{\pm}} = \frac{m_t}{v \tan \beta} b_L t^c H^+ + \text{h.c.} + \text{tau terms}$$

For $m_{H,A,H^\pm}\gg m_h, m_Z$; $\lambda_{\bar{t}th}, \lambda_{\bar{b}bh}, \lambda_{\bar{\tau}\tau h}\Rightarrow {\sf SM}$ couplings. Whereas H,A,H^\pm coupling to fermions $\Rightarrow \frac{m_f}{\sqrt{2}v}\left(\frac{1}{\tan\beta}\right)\to 0$ for large $\tan(\beta)$.

Gauge Couplings for Higgs

$$g_{H o VV} \sim rac{g}{2} rac{m_h^2}{M_H^2}$$

- Heavy Higgs sector ∼decouples from both gauge and fermion sector
 - ⇒ fermiophobic heavy Higgs sector (FMSSM)

Phenomenological Implications

(A)LHC Signals

- New vector-like quarks, D^c , \overline{D}^c and leptons L, \overline{L} at the TeV scale.
- ullet D^c,\overline{D}^c can be produced at LHC, $\sigma(M_D\sim 1{
 m TeV})\sim 100{
 m fb}$
- Decays: $D^c \to Hb$, $H^{\pm}t$ dominant $D^c \to hb$ suppressed

Pnomenological Implications

- (1) If $M_H > M_{D^c}$, then $D^c \to hb$ $\Rightarrow hhb\bar{b}$ (double Higgs productions with anomalous large cross section)
- (2) If $M_H < M_{D^c}$ Then $D^c \to bH$, tWSignal $\Rightarrow b\overline{b}4W$, $b\overline{b}4Z$, $b\overline{b}t\overline{t}$ $\Rightarrow observable \ signal \ at \ the \ early \ run \ at \ LHC$

Phenomenological Implications

- (B) Difference with usual MSSM
 - No enhancement for the rare processes

like
$$b \to s\gamma$$
, $B_0 \to \mu^+\mu^-$

 $(b\bar{b},\ auar{ au}$ couplings not aneta enchanced)

- (C) Different SUSY signals
 - $f\tilde{f}h$ coupling insensitive to $\tan \beta$ \Rightarrow extend the DM region.
- (D) $(\hat{D}^c + \hat{\bar{D}}^c), (\hat{L} + \hat{\bar{L}}) \Rightarrow$ complete multiplet \Rightarrow gauge coupling unification *not* affected

Inclusion of Light Families

• Introduce:
$$(\hat{D}^c + \hat{\bar{D}}^c)_i, (\hat{L} + \hat{\bar{L}})_i \ i = 1, 2, 3$$

- Fermion mass hierarchy and CKM can be accommodated
- FCNC avoided using appropriate flavor symmetry (ex. SO(3))

Embedding in SU(5) GUT

• For one family $10 + \bar{5}$

$$(q, u^c, e^c) + (d^c, I)$$

• Add vectorlike $F + \bar{F}$ in TeV scale

$$(D^c,L)+(\bar{D}^c,\bar{L})$$

- \Rightarrow $m_b, m_ au$ masses generated radiatively
- \Rightarrow can give miss-match from $m_b=m_ au$
- ⇒fermion mass relations (to be studied)

Conclusions

- We proposed a new extension of MSSM
 ⇒ FMSSM
- Realized using suitable R-symmetry
- Preserve the goodies of MSSM, but testable differences $\tan \beta$ dependence, $b \to s \gamma$, $B_0 \to \mu^+ \mu^-$, may extend the allowed DM region
- ullet Requires vector-like quarks $D^c + ar{D}^c$, $L + ar{L}$ at ~ 1 TeV
- Lightest neutral CP even Higgs h essentially SM like
- Heavy Higgs sector fermiophobic (FMSSM)
- Interesting new signals at the LHC from the pair production of D^c , \bar{D}^c $\Rightarrow b\bar{b}4W$, $b\bar{b}4Z$, $b\bar{b}t\bar{t}$, $b\bar{b}hh$
- Could be observed at the early runs at the LHC

