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µ-problem

The superpotential of Minimal Supersymmetric Standard Model is

WMSSM = µHuHd + Y u
ijQiU

c
j Hu + Y d

ijQiD
c
jHd + Y e

ijLiE
c
j Hd

The soft terms in the MSSM are

Vsoft = m2

Hd
|Hd|

2 + m2

Hu
|Hu|

2 + (Bµµ)HuHd + · · ·

In order to have consistent electroweak symmetry breaking, we should have

µ2 ∼ m2

Hd
, m2

Hu
, (Bµµ) ∼ TeV2

We should explain the origin of µ-term and soft terms in a single theory.
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Soft terms and µ-term in supergravity

Locally supersymmetric invariant theory is called supergravity.
In supergravity we can have fields which are gauge singlets but interact gravitationally.
These are called hidden sector fields.
In supergravity we can write superpotential and Kahler potential as

W = Λ2S + WMSSM , K = S†S +
X

Φ†
i Φi

where S is a hidden sector field, Φi is any MSSM field and Λ ∼ 1010 GeV.
The scalar potential in supergravity contains all soft terms with corresponding
parameters as

msoft ∼
Λ2〈S〉

M2

P

∼ TeV, if 〈S〉 ∼ MP .

To explain the µ-term, let us assume some symmetry group G. Let us assume G

forbids the usual HuHd term, but allows a term

W =
X2

1

MP

HuHd,

where X1 is some other hidden sector field. If 〈X1〉 ∼ Λ, the above term gives a
µ-paramter of order TeV.
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To explain the origin of soft terms and µ-term, we need at least two hidden sector fields
with

〈S〉 ∼ MP , 〈X1〉 ∼ Λ

To achieve the required scalar vaccum expectation values (vev’s), we may have to
choose non-minimal Kahler potential.

W = Λ2S + · · · ,

K = S†S + X†
1
X1 +

„

a
S

MP

S†S + b
S

MP

X†
1
X1 + · · ·

«

,

where a, b ∼ O(1) constants.
We have seen that we need a symmetry group G to forbid the HuHd term in the
superpotential.

Since gravitational interactions do not respect global symmetries, we can choose a gauge

symmetry. The minimal choice for G is a U(1) gauge symmetry.
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Neutrino masses

The neutrino oscillation data indicates the existence of three flavor neutrinos, with
masses mν ≤ .1 eV.
Neutrino mass is so small compared to other elementary particle masses.

Let us try to understand the neutrino masses with the known MSSM fields and hidden

sector fields.
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WLV ∼ λLLEc + λ′QLDc + εLHu

Let us suppose that bilinear term (LHu) exists.
Neutrinos will have mixing masses with gauginos and Higgsinos.
The mixing mass is ∼ ε.
The mass scale of gauginos and Higgsinos is M ∼ O(100) GeV.
The mass of light neutrinos is mν ∼ ε2/M .
For ε ∼ 10−4 GeV, neutrino mass of .1 eV can be explained.
Let us suppose U(1)′ forbids LHu term, instead, let us have

W =
X3

2

M2

P

LHu.

For 〈X2〉 ∼ Λ, we get 〈X2〉
3

M2

P

∼ 10−4 GeV.
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The remaining two terms λLLEc and λ′QlDc, generate neutrino masses at one-loop
level.

ν ν

l̃, d̃

l, d

mν ∼
λ2

32π2
mτ + 3

λ′2

32π2
mb

We need λ, λ′ ∼ 10−4 in order to explain the smallness of neutrino masses.
In our supergravity set-up, we can forbid LLEc, QLDc, and let us have

W ∼
Y1

MP

LLEc +
Y2

MP

QLDc.

We have 〈Y1,2〉

MP
∼ Λ

MP
∼ 10−7.
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To summarize, we have a gauge symmetry SU(3)C × SU(2)L × U(1)Y × U(1)′.

We can write

W = Λ2S + Y u
ijQiU

c
j Hu + Y d

ijQiD
c
jHd + Y e

ijLiE
c
j Hd

+
X2

1

MP

HuHd +
X3

2

M2

P

hiLiHu

The hidden sector fields should have vevs:

〈S〉 ∼ MP , 〈X1〉 ∼ Λ, 〈X2〉 ∼ Λ

K = S†S + X†
1
X1 + X†

2
X2 + Φ†

i Φi

+

„

a
S

MP

S†S + b
S

MP

X†
1
X1 + c

S

MP

X†
2
X2 + d

S

MP

Φ†
i Φi + h.c.

«

Fab =
δab

g2
a

(1 + f
S

MP

)
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HuHd +
X3

2

M2

P

hiLiHu

The hidden sector fields should have vevs:

〈S〉 ∼ MP , 〈X1〉 ∼ Λ, 〈X2〉 ∼ Λ

K = S†S + X†
1
X1 + X†

2
X2 + Φ†

i Φi

+

„

a
S

MP

S†S + b
S

MP

X†
1
X1 + c

S

MP

X†
2
X2 + d

S

MP

Φ†
i Φi + h.c.

«

Fab =
δab

g2
a

(1 + f
S

MP

)
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Stability of proton

In our present model, we have effective operators:

WLV ∼ λLLEc + λ′QLDc + εLHu

In additon to the above operators, if we have baryon number violating operators

WBV ∼ λ′′UcDcDc,

proton can decay to some lighter particles.
Life time of proton is τP ≥ 1032 Years.
In a supersymmetric model, we can also have dimension-5 operators:

W5 ∼
a1

MP

QQQL +
a2

MP

UcUcDcEc

In our specific model with the help of additional U(1)′, we can forbid WBV and W5.
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Anomalies

In our present model we need to statisfy the following anomalies:

[SU(3)c]
2 − U(1)′, [SU(2)L]2 − U(1)′, [U(1)Y ]2 − U(1)′

[gravity]2 − U(1)′, U(1)Y − [U(1)′]2, [U(1)′]3

We have found that we can satisfy these anomalies at the cost of introducing some
additional fields into the model.

Specifically, we need vector-like triplets and some additional hidden sector fields.
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Conclusions and future work

Conclusions:
• We have attempted to solve µ-problem and neutrino mass problem in a

supergravity set-up.
• To solve these problems we have introduced an additional gauge symmetry U(1)′.
• The gauge symmetry U(1)′ can forbid the baryon number violating and

dimension-5 operators, that would cause problems to the stability of proton.
• The anomalies with respect to the U(1)′ can also be satisfied.

Future work:
• We are studying the phenominological prospects of the gauge boson and gaugino

corresponding to the U(1)′.
• We are studying the physical implications of the additional fields that have been

introduced to cancel the anomalies.
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