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MotivationsMotivations

• Study the brane-plus-bulk world scenario

• Find AdS/CFT correspondence

• Simplify supergravity matter couplings



Toy ModelToy Model
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N=2 Conformal N=2 Conformal supergravitysupergravity with matter couplingswith matter couplings

NH Hypermultiplets
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An example of An example of AdSAdS/CFT/CFT

A field of mass m on AdS space is related to the dimension of a 
conformal field on the boundary by (E. Witten, “Anti de Sitter 
space and holography”, hep-th/9802150)

2 2 21( ) ( 4 )
2

m d d d m= ∆ ∆ − ⇔ ∆ = + +

In the simplest on-shell Usp(2) supersymmetric massive scalar 
theory on AdS_5, there are 2 complex scalar fields with masses 
given by  
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Other  examples : Kaluza-Klein harmonics (Kim, Romans and 
van Nieuwenhuizen, 1985)



Methods and ToolsMethods and Tools

Higher dimensional supersymmetric theories have to be the extendHigher dimensional supersymmetric theories have to be the extended ed 
ones (N > 1) which receive more constraintsones (N > 1) which receive more constraints
It is not easy to study extended susy theories in componentsIt is not easy to study extended susy theories in components
There are There are ““specially designedspecially designed”” tools for extended susy theories tools for extended susy theories ----------------
harmonic superspace and projective superspace, with an infinite harmonic superspace and projective superspace, with an infinite 
number of auxiliary fieldsnumber of auxiliary fields
We will use N=1 superspace to study extented susy theoriesWe will use N=1 superspace to study extented susy theories

● N=1 superspace is well-known
● It is well-suited for the bulk-brane world scenario
● It works in a very general way  



Example I:      N=2 Vector Multiplet  (abelian)

It has a gauge field AM, a 4-
component Dirac gaugino 
λ1,2, and a scalar  Σ, which 
can be put in superfields V
and φ as

The 5D gauge transformation

Gauge invariant 
action

Question:  Where is the second susy?
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→ + ∂ Λ
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Second SupersymmetrySecond Supersymmetry

The second supersymmetry

transformations

Two susy transformations close into 5D translations (off-shell)

Non-abelian theories are more complicated but they work in the same way…

The second supersymmetry transformation is important especially 
in the N=2 hypermultiplet cases without extra gauge symmetry



ExampleExample II: 4D N=2 Nonlinear Sigma ModelsII: 4D N=2 Nonlinear Sigma Models
Its characteristic geometry is called Its characteristic geometry is called ““hyperKahlerhyperKahler”” geometry, which has 3 geometry, which has 3 
complex structurescomplex structures (I, J, K). We consider a hyperKahlerian manifold as a (I, J, K). We consider a hyperKahlerian manifold as a 

Kahler manifold with an additional holomorphic sympletic structuKahler manifold with an additional holomorphic sympletic structure.re.

We start with an N=1 sigma model so the 
first susy is manifest

Ansatz for the second susy

We require that the action S4 be invariant 
under the second susy and the second susy 
commutator [ δη 2 , δξ 2 ] closes into the N=2 
algebra, without using the equations of motion. 
(however, the closure of first susy and second 
susy [ δη 1, δξ 2] need the equations of motion)



We then are able to identify the sympletic 2We then are able to identify the sympletic 2--forms and found that they are forms and found that they are 
covariantly constantscovariantly constants. We also derive some integrability conditions which can . We also derive some integrability conditions which can 
characterize the hyperkahlerian geometry, e.g. 3 complex structucharacterize the hyperkahlerian geometry, e.g. 3 complex structures, Ricci res, Ricci 

flatnessflatness……

Conditions for invariance of 
the action and the closure of 
the algebra

3 complex structures 

The second susy depends on K and Ωab



An exampleAn example of HyperKahlerian Manifolds of HyperKahlerian Manifolds 
EguchiEguchi--Hanson T*CP(1) ModelHanson T*CP(1) Model

Hyperkahler 
potential

HyperKahler metric

Holomorphic 2-form Ωab

The second susy



N=2 Superpotential and N=2 Superpotential and TriTri--holomorphic Killing Vectorsholomorphic Killing Vectors

In N=1 we can add arbitrary superpotential. In N=2 the superpoteIn N=1 we can add arbitrary superpotential. In N=2 the superpotential terms ntial terms 
receive constraints which are described by the trireceive constraints which are described by the tri--holomorphic Killing vectors holomorphic Killing vectors 
(t.h.k.v), which means they are (t.h.k.v), which means they are ““holomorphicholomorphic”” with respect to each complex with respect to each complex 

structurestructure. . 

N=2 superpotential depends on 
t.h.k.v. Pa = - i Ωab Xb

The t.h.k.v have following properties:

• They generate isometry 
leaving 3 complex structure 
invariant

• Their norm is exactly the scalar 
potential

•1st and 2nd susy close into 
t.h.k.v.

Killing equation

Tri-holo. condition

This is what N=2 susy tells us. The t.h.k.v. should be related to the central 
charge when other commutators are calculated.



5D Nonlinear Sigma Models in N=1 superspace5D Nonlinear Sigma Models in N=1 superspace

We start from N=2 4D superfields and consider xWe start from N=2 4D superfields and consider x55 as a label, then ask the as a label, then ask the 
closure of 2 susy [ closure of 2 susy [ δδηη 11, , δδξξ 22 ] ] ∝∝ ∂∂55 so we know how to handle so we know how to handle ∂∂55 φφ.  We found .  We found 
the constraint on how the action depends on the constraint on how the action depends on ∂∂55 φφ which leads to the correct which leads to the correct 

action in components.action in components.

Now Φ = Φ (xµ, x5) and the “superpotential”
P (Φa, ∂5 Φb ) gives the kinetic terms of 5th

dimensional pieces. The closure and 5D 
Lorentz invariance lead to the constraint

Which can be solved by 
Ha ( Φ) provided that it 
satisfies

  Ωab = Ha,b – Hb,a for P(Φ) = Ha ∂5 Φa

With proper definition of 5D 
spinors and Γ matrices, the 
component action becomes 
fully Lorentz invariant. Note 
that Ω tensors are absorbed.



5D Warped Gravitational Background 5D Warped Gravitational Background 

We propose a set of rules as guide to constructing supersymmetriWe propose a set of rules as guide to constructing supersymmetric theories in c theories in 
the warped gravitational background,  e. g. AdSthe warped gravitational background,  e. g. AdS55 background, by warping the background, by warping the θθ

variables. The rules are quite simple:    variables. The rules are quite simple:    

For AdS5 metric

which leads to The warping of θ is

Dα = L Dα – 2 ( Dβ L ) Mβ α , 

L= φ1/2 φ-1, with conformal 
compensator (fixed) φ=e1/2 λ z

The N=1 superspace is “warped”!



N=2 Abelian Gauge Theory in AdSN=2 Abelian Gauge Theory in AdS55

For N=2 vector multiplet in 5D, the rules lead to the correct coFor N=2 vector multiplet in 5D, the rules lead to the correct component action. mponent action. 
But that is not enough as we need But that is not enough as we need Killing spinorsKilling spinors which are usually functions of which are usually functions of 

coordinates.  One has to solve Killing spinor equation in AdScoordinates.  One has to solve Killing spinor equation in AdS55. . 

In flat superspace

Some component 
fields are rescaled by 
the warped factor

The second Q-susy has a 4D 
conformal S-susy piece in ξA.

From the expression of ξα, we 
see its explicit dependence of 
xm. 



The Killing spinor equation in AdSThe Killing spinor equation in AdS55 can be found from the susy can be found from the susy 
transformation law of gavitini, which is  transformation law of gavitini, which is  DDMM ΨΨii + + λλ /2  /2  ΓΓMM (q (q ·· σσ))ii

jj ΨΨjj =0=0. . 
Its solutions can be expressed in the combination of two Weyl spIts solutions can be expressed in the combination of two Weyl spinors inors 

( ( ηηoo
11 and and ηηoo

22 are independent constant Weyl spinors)are independent constant Weyl spinors)

ηo
1 and ηo

2 represent the first susy and 
the second susy respectively. The first 
susy is generated by the operator

In the left diagram it is shown 
how the Killing spinor splits into 
two supersymmetries.

The 5D Killing vectors can be 
obtained by lifting 4D conformal 
Killing vectors into 5D.



N=2 N=2 HypermultipletHypermultiplet in AdSin AdS55

This approach also works  for the This approach also works  for the hypermultipletshypermultiplets

2nd susy

Constraints:

where Xa = i Ωab Hb and Ya = i Xa is the homothetic Killing vector

Then one can use gauge fixing conditions to find more 
general HyperKahler potentials in the AdS background. 



2 ( 9 12 )a a
scalar a aV g Y Y K Yλ= − − −

The scalar potential depends on the hyperKahler potential 
and the corresponding homothetic Killing vector

1 1 2 2( , )K φ φ φ φ φ φ= +

1 2

2 2 2 2 2 215 15( ) , ( )
4 4

m c c m c cφ φλ λ= − − = + −

This is what we expected from the AdS/CFT correspondence.



Decomposition of 5D Weyl MultipletDecomposition of 5D Weyl Multiplet

This diagram shows how to break a 5D N=2 Weyl multiplet into a 4This diagram shows how to break a 5D N=2 Weyl multiplet into a 4D N=2 Weyl D N=2 Weyl 
multiplet plus one chiral superfield and one vector superfield, multiplet plus one chiral superfield and one vector superfield, naively. In reality they will naively. In reality they will 
mix with another N=2 vector multiplet to give the physical radiomix with another N=2 vector multiplet to give the physical radion and graviphoton plus n and graviphoton plus 

their super partners.  Hence the problem reduces to the 4D N=2 ctheir super partners.  Hence the problem reduces to the 4D N=2 compensators. ompensators. 
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SummarySummary

The N=1 superspace formulation can be used to build supersymmetrThe N=1 superspace formulation can be used to build supersymmetric models ic models 
in higher dimensional spacetime, by constructing N=2 hypermultipin higher dimensional spacetime, by constructing N=2 hypermultiplets, vector lets, vector 
multiplets and tensor multiplets etc.multiplets and tensor multiplets etc.
Using conformal compensators, the matter couplings of supergraviUsing conformal compensators, the matter couplings of supergravity could be ty could be 
simplified. simplified. 
We generalize this approach in two directions: One is to have laWe generalize this approach in two directions: One is to have larger symmetry rger symmetry 
(from Poincare group to conformal group); another is to include (from Poincare group to conformal group); another is to include gravitational gravitational 
background like the AdS spaces. This tool may help to understandbackground like the AdS spaces. This tool may help to understand the the 
correspondence between AdS gravity and conformal field or stringcorrespondence between AdS gravity and conformal field or string theories.theories.
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