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Viotivations

» Study the brane-plus-bulk world scenario
* Find AdS/CFT correspondence

« Simplify supergravity matter couplings



oy Medel

4D scalar-gravity model

L:%\/a(aﬂ¢aﬂ¢+%¢2R)

Local dilatations o0p=pp, 09, =-21,9,,

Poincare action

g, ——> Weyl multiplet

Supersymmetric
generalization ¢ —— hyper-multiplet/+vector-multiplet




N=2' Confermal supergravity: with matter couplings

N, Hypermultiplets

Weyl multiplet
b, Vi, T %', D

1 H}f/fir{gg!tig'ets 1 vector multiplets

Yi, A ¢, A

EOM of auxilary fielgs
SU(2)-gauge D EOM

Superconformal symmetry breaking
Conformal Supergravity ——— Poincare supergravity



An example of AdS/CET

A field of mass m on AdS space is related to the dimension of a
conformal field on the boundary by (E. Witten, “Anti de Sitter
space and holography”, hep-th/9802150)

m’=A(A-d) & A:%(d ++/d?+4m?)

In the simplest on-shell Usp(2) supersymmetric massive scalar
theory on AdS_5, there are 2 complex scalar fields with masses
given by

me = (c? —c—%)/lz _(c +%)(c —gw

5

15 3
m? =(c’+c—"HA% =(c+)(c-)A°
5, = ( 4) ( 2)( 2)

Other examples : Kaluza-Klein harmonics (Kim, Romans and
van Nieuwenhuizen, 1985)



Methods and! 1'e6ls

Higher dimensional supersymmetic theeries have e be the extended
ones (N = 1) which receive more constraints

It IS net easy to study. extended! susy theories In cemponents

There are “specially designed” teols fior extended!susy: theories —-------
RaNMONIC SUPErspace and projective superspace, With an infinite
Aumer of auxiliary fields

Werwillfuse N=1 superspace to study extented susy theores

e N=1 superspace is well-known
e |t is well-suited for the bulk-brane world scenario
e |t works in a very general way



Example I:  N=2 Vector Multiplet (abelian)

r mygy - N2 +n2 1 202
It has a gauge field A,,, a 4- |4 —00"0A,, +1i0°0X) — 070\ + SQJH D
component Dirac gaugino 1 | _ T
A, ,, and a scalar %, which , = (X 4+ iAs5) + V20 + 07 F
can be put in superfields V V2
and ¢ as

| V5V +A+A
The 5D gauge transformation
¢ —> @+0:A

Gauge invariant SSA _ deXW“Wa |¢92 +he.+ (8 _¢_$)2 |

action

0°0°

Question: Where is the second susy?




Second Supersymmetny:

2+ & — OsV)(0€ + OF

The second supersymmetry
_EW

transformations
Two susy transformations close into 5D translations (off-shell)

Non-abelian theories are more complicated but they work in the same way...

The second supersymmetry transformation is important especially
in the N=2 hypermultiplet cases without extra gauge symmetry



Example |1: 4D N=2 Nonlinear Sigma Models

Its characteristic geometr% IS called “hyperKahler” geemetry, Whichihas 3
complex structures (1, J;, K). We considerarhyperkahlerian manifeld as a
Kahlermanifeldiwith; an additional helemorphic sympletic structure.

We start with an N=1 sigma model so the
first susy is manifest

Sy = /dl xd'0 K (D, D)

Ansatz for the second susy 5Pt — i D2[N“(6n + 0n)]
T - ‘_) B \

We require that the action S, be invariant
under the second susy and the second susy
commutator [ 5, 5, 9, , ] closes into the N=2
algebra, without using the equations of motion.
(however, the closure of first susy and second

susy [ &, 4, 6 ,] need the equations of motion)

1 . = — "
_ 31)3[&’5’(9-1} +61)],

Mg’



We then are able to identify the sympletic 2-ferms and feund that they: are
covariantly. constants. Weralso derve some: integrahbility: conditions which can
characterzertherhyperkahlerian ?Ieometry, e.g. 3 complex structures, Ricci
atness...

Define Q,, =V, N, = 9,N, — ', N..

ab

iti - - o Qo = — W,
Conditions for invariance of 1 _“f’ ] pa
the action and the closure of 2. Qu, (2 are covariantly constant

the algebra 3. Q% QY = -8,

3 complex structures

The second susy depends on K and € N = Q" N, = K;§ 15’..1.



An example of HyperKahlerian Manifoelds

Eguchi-Hansoen T*CP(1) Model

Hyperkahler

potential K(X.Y,X.Y)=+\1+4p'— Lo JME o= VXX +YY.
HyperKahler metric o P +YY ._}...-j—_
| XY P4 XX

Holomorphic 2-form Q_,

The second susy




N=2 Superpotentiall and Tri-holomerphic Killing Vectors

In N=1 we can add anitrany superpoetential. In N=2 the superpotential terms
receive constraints whichiare descrined by the tri-helemoerphic Killing vectors
(t.h.kv), Whichi means they: are “hoelomerphic” with respect tereach complex

Stiructure.

N=2 superpotential depends on = / d'zd'0 K(D, D)+ / d*0 s P(®) + / d*0 s* P(D),
thkyv. P, =-iQ, X :

The t.h.k.v have following properties: Pt = l}t YYD2[K(0n + 07)] — 2(s + s7)Q POy
* They generate isometry ), P = gﬂ_lm’DE[HF,(H?F +0m)] — 2(s + s P,og,
leaving 3 complex structure B
invariant Define X = ; Qﬂh Jph
* Their norm is exactly the scalar . _
potential Killing equation —— SNV CE AV G
-1t and 2nd susy close into Tri-holo. condition ——»EPNEASAVIS'CESSSLAVED Gy ()

t.h.k.v.

This is what N=2 susy tells us. The t.h.k.v. should be related to the central
charge when other commutators are calculated.



5D Nonlinear Sigma Maedels in N=1. superspace

We start from N=2 4D superflelds and consider x° as a label, then ask the
closure oft 2 susy [ & > | o¢c O SO We know: how! to handle o= O, We found
the constraint on hé\N & action’ depends on o: orwhich leads ?o the correct
Action| I COMPONENTS.

Now @ = @ (x*, x°) and the “superpotential S5 = / drd'0 K(D,P) + / d*0 P(D,050) + h.c.
P (@2, 05 ®° ) gives the kinetic terms of 5"
dimensional pieces. The closure and 5D

Lorentz invariance lead to the constraint ., EEEY-EEEPEFY- |
Adha A, = —Q05P".
b 300, d?

Which can be solved by

H, ( @) provided that it

for P(®) = H, 05 ®2

satisfies

With proper definition of 5D Vo el | 1
spinors and I" matrices, the [ESEIRESEE/A1o)Y 2 S aabz SR 1/ I A\ i R (07 VAVASE Sl Bito) Vo2 Ra\ oy
component action becomes 1
fully Lorentz invariant. Note ——R ;
that Q tensors are absorbed. 40

,( LIJbFM'an‘:) ( \IJdF‘w\IJC:) .

‘abed




5D Warped Gravitational Backgreund

\We propese a set of rules as guide 1o constructing supersymmetric theores in
the warped gravitational background, €. g. AdS: background, by warping the 6
variables. The rules are guite simple:

g — I? (‘} — Ij.. D:;r — Dﬂ._‘_ B-‘.’t — f){'\': / fﬂﬁﬂ? . / fﬂﬁﬂ?\ /"_—y

For AdS5 metric d,f_-,"? — G_E)ll:??'f.ﬂ-'ﬂ- U_ff[.fm d:{:n + d:,}

which leads to

The warping of 0 is

) 9,
- +io™0%0,, — D,=——+ic" 0%, "0, D,=LD,-2(DFL)M;,,
U‘H‘ r?z a
a1 i-) o i L= (I)1l2 (I_)-1, with conformal
LAY nu{)m [ _W — v rT““(“ d”' Compensator (f|Xed) ¢=e1/2 o

The N=1 superspace is “warped”!



N=2 Abelian Gauge: lfheory in AdS,

For N=2 vector multiplet in 5D, the rules lead to the correct component action.
BUT that Isinet enough as we need Killinarspinors; which are usually fitinctions ofi
coordinates. One has to solve Killing spinor equation infAdS:.

‘._ 1 ’ 20 TAFOTRS . 1 ' : =220 17 . =42
In flat superspace [T PN o ] 207 u-n+h.f,..+g—2j a' M0V — (x + X))

= a2 & c?A —EA T ]-—-'.r g
Some‘compenent /= —00°0 8, A + 1070V N, — i0%0eIVN, + —0%0%e D
fields are rescaled by 2
the warped factor , 1 (S +ids) + V20 3\, + 02 F

\/:_

The second Q-susy has a 4D

conformal S-susy piece in EA. 20x+ X — V)@ 15 + 0 75) — A EDAV

—e S W — XN EADax
From the expression of &, —2(00°5"n, + 16 0%0)x™ épy + 2i(6%00 ) — 0%10%0)

see its explicit dependence of B
Xm ‘ ( —f‘ _E'IIFH ﬂ?n (!:J'af_.i) a




The Killing spinor equation in' AdS: can be found from the susy.
transformationi law: of gavitini, whichiis Dy, ‘P; + 4 /2 1, (g - )} ‘¥, =0.
Its selutions can e expressed in the combination ofi twe Weyl spinors
(n°, andin®, are independent constant WWeyl spiners)

°. and n°, represent the first susy and - A — o3
thé secondzsus?y respectively. The first me+me = nQ +naQ
susy is generated by the opérator ‘

_l Ao * ¥
w;' — e 5 A2 (nf + zAa:mﬁ,,fJaﬂg)

In the left diagram it is shown
how the Killing spinor splits into
two supersymmetries.

The 5D Killing vectors can be
obtained by lifting 4D conformal
Killing vectors into 5D.



N=2 Hypermultiplet in AdS,

This appreach also werks fier the hypermultiplets

Ssp = /d.E‘;r-[/ d*fe MK (D, D) + /d.z TN H 05D + h.c]

2nd susy 0y @ = 5 D2 [Q Ko(0n + 07)] — 120Q Hyfn — Ael D4 0"

yd

Constraints:

I{faﬂabe — I\’J_Qﬁhﬁg 'iQ,r_],chjfc - incVax‘“-‘rc — Qﬂ_,[}

where X2 =i Q2 H_ and Y2 =i X2 is the homothetic Killing vector

Then one can use gauge fixing conditions to find more
general HyperKahler potentials in the AdS background.



V

scalar

= —Jg A2(-9Y?Y, 12K Y?)

The scalar potential depends on the hyperKahler potential
and the corresponding homothetic Killing vector

K(¢.4)=¢"¢"+4°¢

m, =(c’ —c—%)/iz, m, =(c* +c—%)/12

This is what we expected from the AdS/CFT correspondence.



Decemposition ofi SD Weyl Multiplet

This diagram shoews how! ter break a 5D N=2 Weyll multiplet inter a 4D N=2'\\Weyl
multiplet plus ene chiral superfield and ene vector superfield, naively. lin reality they will
mix with; anether N=2 vector multiplet to give. the physical radien and graviphoeten plus

their super partners. Hence the problem reduces; to) the 4DIN=2 cempensators.

ey Y by Vil” = ol ey Bt

32+32
9 24 0 12 10 1 8
St THASER RO ST o e R TN Ty D y!
e L 5 ¥ 5 o] B A e e
o | 24+24
B> ibirds T TS /ST T, =A,+0, A




SuUmmary.

The N=1 superspace formulation can lae used te build supersymmetric models
IR higher dimensional spacetime; By constructing N=2 hypermultiplets; vector
multiplets and tenser multiplets ete.

Using confiermall compensators, the matter couplings ofi supergravity: could e
simpliiied.

\We generalize thisiapproeach 1n two  directions: One s tohave larger symmetry
(from Peincare group to cenformal group); anether isito include gravitational
packground like the AdS spaces. This toel may: helpito understand the
correspondence letween AdSigravity: and confiermalifield or string theories.



	Anti de Sitter Supersymmetry inN=1 superspace
	Motivations
	Toy Model
	N=2 Conformal supergravity with matter couplings
	An example of AdS/CFT
	Methods and Tools
	Second Supersymmetry
	Example II: 4D N=2 Nonlinear Sigma ModelsIts characteristic geometry is called “hyperKahler” geometry, which has 3 complex s
	We then are able to identify the sympletic 2-forms and found that they are covariantly constants. We also derive some integrab
	An example of HyperKahlerian Manifolds Eguchi-Hanson T*CP(1) Model
	N=2 Superpotential and Tri-holomorphic Killing VectorsIn N=1 we can add arbitrary superpotential. In N=2 the superpotential
	5D Nonlinear Sigma Models in N=1 superspaceWe start from N=2 4D superfields and consider x5 as a label, then ask the closure
	5D Warped Gravitational Background We propose a set of rules as guide to constructing supersymmetric theories in the warped
	N=2 Abelian Gauge Theory in AdS5For N=2 vector multiplet in 5D, the rules lead to the correct component action. But that is
	The Killing spinor equation in AdS5 can be found from the susy transformation law of gavitini, which is  DM i +  /2  M (q ¢
	N=2 Hypermultiplet in AdS5This approach also works  for the hypermultiplets
	Decomposition of 5D Weyl MultipletThis diagram shows how to break a 5D N=2 Weyl multiplet into a 4D N=2 Weyl multiplet plus
	Summary

