

- Neutrino mass and mixing
- Neutrino mass models roadmap (survey)
- Family symmetry
- GUT relations and predictions
- Implications for the LHC

Steve King, Pheno'08, University of Wisconsin, Madison, 28th April, 2008

Neutrino Mass and Mixing

Neutrino mass squared splittings and angles

Tri-bimaximal mixing (TBM)

Harrison, Perkins, Scott

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \theta_{12} = 35^\circ, \qquad \theta_{23} = 45^\circ, \qquad \theta_{13} = 0^\circ.$$

c.f. data $\theta_{12} = 33^{\circ} \pm 5^{\circ}, \theta_{23} = 45^{\circ} \pm 10^{\circ}, \theta_{13} < 13^{\circ}$

- Current data is consistent with TBM
- But no convincing reason for exact TBM expect deviations

Neutrino mass models roadmap

Why not Standard model?

- 1. There are no right-handed neutrinos V_R
- 2. There are only Higgs doublets of $SU(2)_{L}$
- 3. There are only renormalizable terms

In the Standard Model these conditions all apply so neutrinos are massless, with ν_e , ν_μ , ν_τ distinguished by separate lepton numbers L_e, L_μ, L_τ

Neutrinos and anti-neutrinos are distinguished by the total conserved lepton number $L=L_e+L_\mu+L_\tau$

To generate neutrino mass we must relax 1 and/or 2 and/or 3

LSND True or False?

MiniBoone does not support LSND result

does support three neutrinos

In this talk we assume that LSND is false

Dirac

Recall origin of electron mass in SM with $L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$, e_R^- , $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$ $\lambda_e \overline{L} H e_R^- = \lambda_e \langle H^0 \rangle \overline{e}_L^- e_R^-$

Yukawa coupling λ_e must be small since <H⁰>=175 GeV

$$m_e = \lambda_e \langle H^0 \rangle \approx 0.5 \, MeV \Leftrightarrow \lambda_e \approx 3.10^{-6}$$

Introduce right-handed neutrino ν_{eR} with zero Majorana mass

$$\lambda_{v}\overline{L}H^{c}V_{eR} = \lambda_{v}\left\langle H^{0}\right\rangle\overline{V}_{eL}V_{eR}$$

then Yukawa coupling generates a Dirac neutrino mass

$$m_{LR}^{\nu} = \lambda_{\nu} \langle H^0 \rangle \approx 0.2 \ eV \Leftrightarrow \lambda_{\nu} \approx 10^{-12}$$
 Why so small?
- extra dimensions

Flat extra dimensions with RH neutrinos in the bulk

Majorana

Renormalisable $\Delta L = 2$ operator $\lambda_V LL\Delta$ where Δ is light Higgs triplet with VEV < 8GeV from ρ parameter

Non-renormalisable
$$\frac{\lambda_v}{M}LLHH = \frac{\lambda_v}{M} \langle H^0 \rangle^2 \overline{v}_{eL} v_{eL}^c$$
 Weinberg

This is nice because it gives naturally small Majorana neutrino masses $m_{LL} \sim \langle H^0 \rangle^2 / M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

Loop models

Introduce Higgs singlets and triplets with couplings to leptons

$$-\mathcal{L}^{yuk} = f_{ij}H^{++}l_il_j + g_{ij}H^+l_i\nu_j + h_{ij}H^0\nu_i\nu_j$$

$$\overset{X}{H_2(H_1)_1^{\dagger}} \quad \text{Zee (one loop)} \qquad \text{Babu (two loop)}$$

$$H^+, \overset{X}{H_1(H_2)} \quad H^+, \overset{H^+}{H_1(H_2)} \quad H^+, \overset{H^+}{H_1$$

• RPV SUSY

Another way to generate Majorana masses is via SUSY

Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

•Types of see-saw mechanism

Inverted or degenerate can be tested by neutrinoless double beta decay

How precise is Tri-bimaximal mixing?

To answer this it is useful to parametrize the PMNS mixing matrix in terms of deviations from TBM

$$s_{13} = \frac{r}{\sqrt{2}}, \quad s_{12} = \frac{1}{\sqrt{3}}(1+s), \quad s_{23} = \frac{1}{\sqrt{2}}(1+a)$$

0 < r < 0.22, -0.11 < s < 0.04, -0.12 < a < 0.13.

r = reactor

s = solar a = atmospheric

If r,s,a are very small this probably requires family symmetry

This implies a non-Abelian family symmetry

Need

$$Y_{LR}^{\nu} = \begin{pmatrix} 0 & B_1 & - \\ A_2 & B_2 & - \\ A_3 & B_3 & - \end{pmatrix} \quad \text{with} \quad \begin{array}{c} |A_1| &= 0, \\ |A_2| &= |A_3|, \\ |B_1| &= |B_2| = |B_3|, \\ A^{\dagger}B &= 0 \end{array}$$

 $2\leftrightarrow 3$ symmetry (from maximal atmospheric mixing) $1\leftrightarrow 2\leftrightarrow 3$ symmetry (from tri-maximal solar mixing)

Examples of suitable non-Abelian Family Symmetries:

Family × GUT symmetry approach

Many models have been constructed:

Predictions for θ_{12} and θ_{13}

Bjorken; Ferrandis, Pakvasa; SFK

c.f. Cabibbo Haze analysis of Everett, Ramond with a ``left-Cabibbo shift"

$$\mathcal{U}_{\text{PMNS}} = \mathcal{V}(\lambda) \mathcal{W} \quad V(\lambda) \approx \begin{pmatrix} 1 & (\lambda/3)e^{-i\delta} & 0 \\ -(\lambda/3)e^{i\delta} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad W = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$U_{MNS} = V^{E_L} V^{\nu_L \dagger} \approx \begin{pmatrix} 1 & (\lambda/3)e^{-i\delta} & 0 \\ -(\lambda/3)e^{i\delta} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\lambda = \text{Wolfenstein}$$
$$U_{MNS} \approx \begin{pmatrix} \sqrt{\frac{2}{3}} (1 - (\lambda/6)\cos\delta) & \frac{1}{\sqrt{3}} (1 + (\lambda/3)\cos\delta) & \frac{1}{\sqrt{2}} (\lambda/3)e^{-i\delta} \\ -\frac{1}{\sqrt{6}} (1 + (2\lambda/3)\cos\delta) & \frac{1}{\sqrt{3}} (1 - (\lambda/3)\cos\delta) & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

28/04/2008

RGE corrections to sum rule $\theta_{12}^{o} \approx 35^{o} + \theta_{13}^{o} \cos \delta$

Canonical/Kahler corrections to TBM $\theta_{ij}[^{o}]$ $a = \frac{1}{4}\eta$ 60 θ_{23} 50 $\theta_{23}^{TB} = 45^o$ $\frac{1}{6}\eta$ s =40 $\theta_{12}^{TB} = 35.26^{\circ}$ θ_{12} 30 New beyond beyond sum 20 Antusch, SFK, Malinsky leading order leading order rule approximation approximation 10 $\theta_{13}^{TB} = 0^{o}$ θ_{13} 0 -0.6-0.4-0.20.2 0.6 0.0 0.4 n $\frac{2}{3}a$ $s = r \cos \delta +$ η = third family wavefunction correction (highly model dependent - could be small)

Experimental prospects to measure (r cos δ)

Antusch, Huber, SFK, Schwetz

LHC Implications – for SUSY

Ross, Vives, Velasco-Sevilla; Antusch, SFK, Malinsky

Observation: SU(3) or Δ_{27} family symmetry predicts universal soft mass matrices in the symmetry limit

$$m_Q^2 \propto m_{u^c}^2 \propto m_{d^c}^2 \propto m_L^2 \propto m_{e^c}^2 \propto m_{N^c}^2 \propto \mathbb{1}$$

However Yukawa matrices and trilinear soft masses vanish in the SU(3) or Δ_{27} symmetry limit

In the real world where SU(3) or Δ_{27} is broken can perform an expansion in powers of small Yukawa coupling expansion parameters $\varepsilon \approx 0.05, \overline{\varepsilon} \approx 0.15$

If we impose CP symmetry spontaneously broken by flavon VEVs can also solve the SUSY CP Problem

Recall Yukawa matrices, ignoring phases:

$$Y^{u} = \begin{pmatrix} 0 & \varepsilon^{3} & \varepsilon^{3} \\ \varepsilon^{3} & 2\varepsilon^{2} & 2\varepsilon^{2} \\ \varepsilon^{3} & 2\varepsilon^{2} & 1 \end{pmatrix}, \quad Y^{d} = \begin{pmatrix} 0 & \overline{\varepsilon}^{3} & \overline{\varepsilon}^{3} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & \overline{\varepsilon}^{2} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & 1 \end{pmatrix}, \quad Y^{e} = \begin{pmatrix} 0 & \overline{\varepsilon}^{3} & \overline{\varepsilon}^{3} \\ \overline{\varepsilon}^{3} & 3\overline{\varepsilon}^{2} & 3\overline{\varepsilon}^{2} \\ \overline{\varepsilon}^{3} & 3\overline{\varepsilon}^{2} & 1 \end{pmatrix}.$$

Antusch, SFK, Malinsky

Under similar assumptions we predict at M_{GUT} :

$$\begin{split} m_Q^2 &\approx m_0^2 \begin{pmatrix} 1+\varepsilon^4 & \varepsilon^4 & \varepsilon^4 \\ \varepsilon^4 & 1+\varepsilon^2 & \varepsilon^2 \\ \varepsilon^4 & \varepsilon^2 & 1+\mathcal{O}(1) \end{pmatrix}, \quad m_{d^c}^2 &\approx m_0^2 \begin{pmatrix} 1+\overline{\varepsilon}^4 & \overline{\varepsilon}^4 & \overline{\varepsilon}^4 \\ \overline{\varepsilon}^4 & 1+\overline{\varepsilon}^2 & \overline{\varepsilon}^2 \\ \overline{\varepsilon}^4 & \overline{\varepsilon}^2 & 1+\mathcal{O}(1) \end{pmatrix} \\ m_{u^c}^2 &\approx m_0^2 \begin{pmatrix} 1+\varepsilon^4 & \varepsilon^4 & \varepsilon^4 \\ \varepsilon^4 & 1+\varepsilon^2 & \varepsilon^2 \\ \varepsilon^4 & \varepsilon^2 & 1+\mathcal{O}(1) \end{pmatrix}, \quad \text{Note strong third family non-universality} \\ m_L^2 &\approx m_0^2 \begin{pmatrix} 1+\varepsilon^4 & \varepsilon^4 & \varepsilon^4 \\ \varepsilon^4 & 1+\varepsilon^2 & \varepsilon^2 \\ \varepsilon^4 & \varepsilon^2 & 1+\mathcal{O}(1) \end{pmatrix}, \quad m_{e^c}^2 &\approx m_0^2 \begin{pmatrix} 1+\overline{\varepsilon}^4 & \overline{\varepsilon}^4 & \overline{\varepsilon}^4 \\ \overline{\varepsilon}^4 & 1+\overline{\varepsilon}^2 & \overline{\varepsilon}^2 \\ \overline{\varepsilon}^4 & \overline{\varepsilon}^2 & 1+\mathcal{O}(1) \end{pmatrix}, \end{split}$$

Conclusion

- Neutrino mass and mixing provides new insight into the flavour problem
- Precise TBM can be understood from the see-saw mechanism with sequential dominance
- This motivates a non-Abelian family symmetry
- GUTs plus family symmetry leads to quark-lepton relations leading to predictions for the reactor angle and testable sum rules
- Family symmetry can solve the SUSY flavour and CP problems and implies third family squark and slepton non-universality at the LHC