Minimal gauge inflation

Jinn-Ouk Gong

University of Wisconsin-Madison 1150 University Avenue, Madison WI 53706-1390 USA

Pheno 2008 University of Wisconsin-Madison 29th April, 2008

《曰》《聞》《臣》《臣》 [] 臣

Based on

• J.-O. Gong and S. C. Park, arXiv:0801.0333[hep-ph]

3 Cosmological evolution

Inflation···

- Can resolve many cosmological problems e.g. horizon problem
- Provides the desired initial conditions of the hot big bang evolution
- is strongly supported by recent observations e.g. WMAP 5-year data

Inflation···

- Can resolve many cosmological problems e.g. horizon problem
- Provides the desired initial conditions of the hot big bang evolution
- is strongly supported by recent observations e.g. WMAP 5-year data
- ··· provided that the **slow-roll condition** is valid for the inflaton field

Inflation···

- Can resolve many cosmological problems e.g. horizon problem
- 2 provides the desired initial conditions of the hot big bang evolution
- is strongly supported by recent observations e.g. WMAP 5-year data
- ··· provided that the **slow-roll condition** is valid for the inflaton field

We need a FLAT INFLATON POTENTIAL

Inflation···

- Can resolve many cosmological problems e.g. horizon problem
- Provides the desired initial conditions of the hot big bang evolution
- It is strongly supported by recent observations e.g. WMAP 5-year data
- ··· provided that the **slow-roll condition** is valid for the inflaton field

We need a *FLAT INFLATON POTENTIAL*

Question: how to force the inflaton to have flat enough potential *naturally*? **Answer**: we may resort to the *symmetry*

Inflaton = 5D non-Abelian gauge field in hidden sector

 \Rightarrow natural inflation

$$V \sim \Lambda^4 \left[1 \pm \cos\left(\frac{\phi}{f}\right) \right]$$

Inflaton = 5D non-Abelian gauge field in hidden sector

 \Rightarrow natural inflation

$$V \sim \Lambda^4 \left[1 \pm \cos\left(\frac{\phi}{f}\right) \right]$$

Advantages:

• Trustable *V* even for $f \gtrsim M_{\rm Pl}$

Inflaton = 5D non-Abelian gauge field in hidden sector

 \Rightarrow natural inflation

$$V \sim \Lambda^4 \left[1 \pm \cos\left(\frac{\phi}{f}\right) \right]$$

- Trustable *V* even for $f \gtrsim M_{\rm Pl}$
- No additional matter fields

Inflaton = 5D non-Abelian gauge field in hidden sector

 \Rightarrow natural inflation

$$V \sim \Lambda^4 \left[1 \pm \cos\left(\frac{\phi}{f}\right) \right]$$

- Trustable *V* even for $f \gtrsim M_{\rm Pl}$
- No additional matter fields
- Solution Flatness is protected \rightarrow no potential at tree level

Inflaton = 5D non-Abelian gauge field in hidden sector

 \Rightarrow natural inflation

$$V \sim \Lambda^4 \left[1 \pm \cos\left(\frac{\phi}{f}\right) \right]$$

- Trustable *V* even for $f \gtrsim M_{\rm Pl}$
- No additional matter fields
- Solution Flatness is protected \rightarrow no potential at tree level
- less constrained

SU(2) gauge theory on the orbifold

Gauge theory on S^1/\mathbb{Z}_2 : Two independent parity conditions at y = 0, πR as

$$A_{\mu}(x, -y) = P_0 A_{\mu}(x, y) P_0$$

$$A_5(x, -y) = -P_0 A_5(x, y) P_0$$

$$A_{\mu}(x, \pi R - y) = P_1 A_{\mu}(x, \pi R + y) P_1$$

$$A_5(x, \pi R - y) = -P_1 A_5(x, \pi R + y) P_1$$

SU(2) gauge theory on the orbifold

Gauge theory on S^1/\mathbb{Z}_2 : Two independent parity conditions at y = 0, πR as

$$A_{\mu}(x, -y) = P_0 A_{\mu}(x, y) P_0$$

$$A_5(x, -y) = -P_0 A_5(x, y) P_0$$

$$A_{\mu}(x, \pi R - y) = P_1 A_{\mu}(x, \pi R + y) P_1$$

$$A_5(x, \pi R - y) = -P_1 A_5(x, \pi R + y) P_1$$

Taking $P_0 = P_1 = \text{diag}(1, -1)$, parity assignment with P_0 and P_1

$$A_{\mu} = \begin{pmatrix} (++) & (--) \\ (--) & (++) \end{pmatrix}$$
$$A_{5} = \begin{pmatrix} (--) & (++) \\ (++) & (--) \end{pmatrix}$$

SU(2) gauge theory on the orbifold

Gauge theory on S^1/\mathbb{Z}_2 : Two independent parity conditions at y = 0, πR as

$$A_{\mu}(x, -y) = P_0 A_{\mu}(x, y) P_0$$

$$A_5(x, -y) = -P_0 A_5(x, y) P_0$$

$$A_{\mu}(x, \pi R - y) = P_1 A_{\mu}(x, \pi R + y) P_1$$

$$A_5(x, \pi R - y) = -P_1 A_5(x, \pi R + y) P_1$$

Taking $P_0 = P_1 = \text{diag}(1, -1)$, parity assignment with P_0 and P_1

$$A_{\mu} = \begin{pmatrix} (++) & (--) \\ (--) & (++) \end{pmatrix}$$
$$A_{5} = \begin{pmatrix} (--) & (++) \\ (++) & (--) \end{pmatrix}$$

Zero modes:

SU(2) gauge theory on the orbifold

Gauge theory on S^1/\mathbb{Z}_2 : Two independent parity conditions at y = 0, πR as

$$A_{\mu}(x, -y) = P_0 A_{\mu}(x, y) P_0$$

$$A_5(x, -y) = -P_0 A_5(x, y) P_0$$

$$A_{\mu}(x, \pi R - y) = P_1 A_{\mu}(x, \pi R + y) P_1$$

$$A_5(x, \pi R - y) = -P_1 A_5(x, \pi R + y) P_1$$

Taking $P_0 = P_1 = \text{diag}(1, -1)$, parity assignment with P_0 and P_1

$$A_{\mu} = \begin{pmatrix} (++) & (--) \\ (--) & (++) \end{pmatrix}$$
$$A_{5} = \begin{pmatrix} (--) & (++) \\ (++) & (--) \end{pmatrix}$$

Zero modes: mirror photon A^3_{μ}

SU(2) gauge theory on the orbifold

Gauge theory on S^1/\mathbb{Z}_2 : Two independent parity conditions at y = 0, πR as

$$A_{\mu}(x, -y) = P_0 A_{\mu}(x, y) P_0$$

$$A_5(x, -y) = -P_0 A_5(x, y) P_0$$

$$A_{\mu}(x, \pi R - y) = P_1 A_{\mu}(x, \pi R + y) P_1$$

$$A_5(x, \pi R - y) = -P_1 A_5(x, \pi R + y) P_1$$

Taking $P_0 = P_1 = \text{diag}(1, -1)$, parity assignment with P_0 and P_1

$$A_{\mu} = \begin{pmatrix} (++) & (--) \\ (--) & (++) \end{pmatrix}$$
$$A_{5} = \begin{pmatrix} (--) & (++) \\ (++) & (--) \end{pmatrix}$$

Zero modes: mirror photon A^3_{μ} and inflaton $A^{1,2}_5 \rightarrow \phi$

1-loop inflaton potential

Induced one-loop effective potential of ϕ

$$V_{1-\text{loop}}(\phi) = -\frac{9}{(2\pi)^6 R^4} \sum_{n=1}^{\infty} \frac{\cos(n\phi/f_{\text{eff}})}{n^5}$$

with the effective decay constant

$$f_{\rm eff} = (2\pi g_{\rm 4D} R)^{-1}$$

1-loop inflaton potential

Induced one-loop effective potential of ϕ

$$V_{1-\text{loop}}(\phi) = -\frac{9}{(2\pi)^6 R^4} \sum_{n=1}^{\infty} \frac{\cos(n\phi/f_{\text{eff}})}{n^5}$$

with the effective decay constant

$$f_{\rm eff} = (2\pi g_{\rm 4D} R)^{-1}$$

The radiatively generated inflaton potential

$$V(\phi) = \frac{9}{(2\pi)^6 R^4} \sum_{n=1}^{\infty} \frac{1}{n^5} \left[1 - \cos\left(\frac{n\phi}{f_{\text{eff}}}\right) \right]$$

with a cosmological constant $9\zeta(5)R^{-4}/(2\pi)^6$

Observable quantities

Leading approximation: n = 1 piece \rightarrow NATURAL INFLATION

$$V(\phi) \approx \frac{9}{(2\pi)^6 R^4} \left[1 - \cos\left(\frac{\phi}{f_{\rm eff}}\right) \right]$$

Observable quantities

Leading approximation: n = 1 piece \rightarrow NATURAL INFLATION

$$V(\phi) \approx \frac{9}{(2\pi)^6 R^4} \left[1 - \cos\left(\frac{\phi}{f_{\rm eff}}\right) \right]$$

Observable quantities first order in the slow-roll approximation

$$\mathcal{P}_{\mathcal{R}}^{1/2} = \sqrt{\frac{8V}{3\epsilon M_{\rm Pl}^4}}$$
$$n_{\mathcal{R}} = 1 - 6\epsilon + 2\eta$$
$$r = 16\epsilon$$
$$-\frac{3}{5}f_{\rm NL} = \frac{1}{2} \left[\left(3 + f_k \right)\epsilon - \eta \right]$$

with

Cosmological evolution

Analytic estimates with n = 1 piece

$$\begin{split} \mathscr{P}_{\mathscr{R}}^{1/2} &= \frac{8\sqrt{3}}{(2\pi)^{5/2}} \frac{f_{\rm eff}/M_{\rm Pl}}{(RM_{\rm Pl})^2} \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{1/2} \\ & \times \left\{ \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{1/2} \\ n_{\mathscr{R}} &= 1 - \frac{1}{8\pi(f_{\rm eff}/M_{\rm Pl})^2} \left\{ 2 + \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ r &= \frac{1}{\pi(f_{\rm eff}/M_{\rm Pl})^2} \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ - \frac{3}{5}f_{\rm NL} &= \frac{1}{16\pi(f_{\rm eff}/M_{\rm Pl})^2} \left\{ 1 + \frac{1 + f_k}{2} \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & = \frac{1}{16\pi(f_{\rm eff}/M_{\rm Pl})^2} \left\{ 1 + \frac{1 + f_k}{2} \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \right\}^{-1} \\ & \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2$$

Cosmological evolution

Analytic estimates with n = 1 piece

$$\mathcal{P}_{\mathcal{R}}^{1/2} = \frac{8\sqrt{3}}{(2\pi)^{5/2}} \frac{f_{\rm eff}/M_{\rm Pl}}{(RM_{\rm Pl})^2} \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{1/2} \\ \times \left\{ \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{1/2} \\ \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ - \frac{3}{5}f_{\rm NL} = \frac{1}{16\pi(f_{\rm eff}/M_{\rm Pl})^2} \left\{ 1 + \frac{1 + f_k}{2} \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \times \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2} + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{-N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \exp\left[\frac{N}{8\pi(f_{\rm eff}/M_{\rm Pl})^2}\right] \right\}^{-1} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1} \right\} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \\ \left\{ 2 - \frac{32\pi(f_{\rm eff}/M_{\rm Pl})^2}{16\pi(f_{\rm eff}/M_{\rm Pl})^2 + 1}} \\ \left\{ 2 - \frac{32\pi(f_$$

Analytic estimates vs numerical results

		$\mathscr{P}_{\mathscr{R}}^{1/2}$	$n_{\mathcal{R}}$	r
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 0.00$	analytic	4.96×10^{-5}	0.952	0.032
$\log_{10}(RM_{\rm Pl}) = 2.04$	numerical	4.84×10^{-5}	0.955	0.033
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 0.50$	analytic	1.25×10^{-5}	0.967	0.117
$\log_{10}(RM_{\rm Pl}) = 2.04$	numerical	1.33×10^{-5}	0.967	0.112
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 1.00$	analytic	3.94×10^{-5}	0.967	0.131
$\log_{10}(RM_{\rm Pl}) = 1.54$	numerical	4.25×10^{-5}	0.967	0.130
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 1.50$	analytic	1.25×10^{-5}	0.967	0.131
$\log_{10}(RM_{\rm Pl}) = 1.54$	numerical	1.33×10^{-5}	0.967	0.112
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 2.00$	analytic	3.94×10^{-5}	0.967	0.132
$\log_{10}(RM_{\rm Pl}) = 1.04$	numerical	4.26×10^{-5}	0.967	0.134

From the top row, *R* is chosen to make $\Lambda = 10^{-3} M_{\text{Pl}}$, $10^{-5/2} M_{\text{Pl}}$ and $10^{-2} M_{\text{Pl}}$

Analytic estimates vs numerical results

		$\mathscr{P}_{\mathscr{R}}^{1/2}$	$n_{\mathcal{R}}$	r
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 0.00$	analytic	4.96×10^{-5}	0.952	0.032
$\log_{10}(RM_{\rm Pl}) = 2.04$	numerical	4.84×10^{-5}	0.955	0.033
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 0.50$	analytic	1.25×10^{-5}	0.967	0.117
$\log_{10}(RM_{\rm Pl}) = 2.04$	numerical	1.33×10^{-5}	0.967	0.112
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 1.00$	analytic	3.94×10^{-5}	0.967	0.131
$\log_{10}(RM_{\rm Pl}) = 1.54$	numerical	4.25×10^{-5}	0.967	0.130
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 1.50$	analytic	1.25×10^{-5}	0.967	0.131
$\log_{10}(RM_{\rm Pl}) = 1.54$	numerical	1.33×10^{-5}	0.967	0.112
$\log_{10}(f_{\rm eff}/M_{\rm Pl}) = 2.00$	analytic	3.94×10^{-5}	0.967	0.132
$\log_{10}(RM_{\rm Pl}) = 1.04$	numerical	4.26×10^{-5}	0.967	0.134

From the top row, *R* is chosen to make $\Lambda = 10^{-3} M_{\text{Pl}}$, $10^{-5/2} M_{\text{Pl}}$ and $10^{-2} M_{\text{Pl}}$

 \rightarrow Taking *n* = 1 piece is reasonably good

Model parameters: f_{eff} , g_{4D} and R

Model parameters: f_{eff} , g_{4D} and R

• Allowed by observations: $10^{-4} \lesssim \mathscr{P}_{\mathscr{R}}^{1/2} \lesssim 10^{-5}$ and $n_{\mathscr{R}} \sim 0.960^{+0.014}_{-0.013}$

Model parameters: f_{eff} , g_{4D} and R

- Allowed by observations: $10^{-4} \lesssim \mathscr{P}_{\mathscr{R}}^{1/2} \lesssim 10^{-5}$ and $n_{\mathscr{R}} \sim 0.960^{+0.014}_{-0.013}$
- As $f_{\rm eff}/M_{\rm Pl} \to \infty$, with *N* being the number of *e*-folds, $n_{\mathcal{R}}$ and *r* are saturated

Model parameters: f_{eff} , g_{4D} and R

- Allowed by observations: $10^{-4} \lesssim \mathscr{P}_{\mathscr{R}}^{1/2} \lesssim 10^{-5}$ and $n_{\mathscr{R}} \sim 0.960^{+0.014}_{-0.013}$
- As $f_{\rm eff}/M_{\rm Pl} \rightarrow \infty$, with N being the number of e-folds, $n_{\mathscr{R}}$ and r are saturated
- Good agreement when the model parameters are...

perturbative gauge interaction $(g_{4D} \lesssim (2\pi RM_{Pl})^{-1})$ moderately compactified radius $(10 \lesssim RM_{Pl} \lesssim 100)$

 $(g_{4D} \leq (2\pi RM_{\rm Pl})^{-1})$

After inflation ϕ oscillates at the minimum

After inflation ϕ oscillates at the minimum then *gravitationally communicates* with visible sector

After inflation ϕ oscillates at the minimum then *gravitationally communicates* with visible sector

$$\Gamma_{\rm grav} \sim \frac{m_{\phi}^3}{M_{\rm Pl}^2} \sim \frac{M_{\rm Pl}}{(f_{\rm eff}/M_{\rm Pl})^3 (RM_{\rm Pl})^6}$$

N

After inflation ϕ oscillates at the minimum then *gravitationally communicates* with visible sector

$$\Gamma_{\rm grav} \sim \frac{m_{\phi}^3}{M_{\rm Pl}^2} \sim \frac{M_{\rm Pl}}{(f_{\rm eff}/M_{\rm Pl})^3 (RM_{\rm Pl})^6}$$

Note that $H_{\rm end} \sim \mathcal{O}(0.1) \frac{R^{-1}}{(f_{\rm eff}/M_{\rm Pl}) RM_{\rm Pl}} \gg \Gamma_{\rm grav}$

Energy transfer occurs well after inflation

N

After inflation ϕ oscillates at the minimum then *gravitationally communicates* with visible sector

$$\Gamma_{\rm grav} \sim \frac{m_{\phi}^3}{M_{\rm Pl}^2} \sim \frac{M_{\rm Pl}}{(f_{\rm eff}/M_{\rm Pl})^3 (RM_{\rm Pl})^6}$$

Note that $H_{\rm end} \sim \mathcal{O}(0.1) \frac{R^{-1}}{(f_{\rm eff}/M_{\rm Pl}) RM_{\rm Pl}} \gg \Gamma_{\rm grav}$

Energy transfer occurs well after inflation

$$T_{\rm RH} \lesssim \mathcal{O}(0.1) \sqrt{\Gamma_{\rm grav} M_{\rm Pl}} \sim \mathcal{O}(0.1) \frac{M_{\rm Pl}}{(f_{\rm eff}/M_{\rm Pl})^{3/2} (RM_{\rm Pl})^3}$$

e.g. $f_{\text{eff}}/M_{\text{Pl}} = 1$ and $RM_{\text{Pl}} = 100 \rightarrow T_{\text{RH}}^{\text{max}} \sim 10^{12-13} \text{GeV}$

Conclusions

• We have presented a cosmological scenario from hidden sector gauge theory

In a wide range of model parameters...

Conclusions

- We have presented a cosmological scenario from hidden sector gauge theory
 - 5D orbifold *S*¹/Z: simplest orbifold compactification with minimal number of extra dimensions
 - SU(2) gauge symmetry: minimal non-Abelian symmetry $\rightarrow V(\phi)$ without additional fields
 - Protected by gauge symmetry
 - Less constrained by low-energy experimental data
- In a wide range of model parameters...

Conclusions

- We have presented a cosmological scenario from hidden sector gauge theory
 - 5D orbifold *S*¹/Z: simplest orbifold compactification with minimal number of extra dimensions
 - SU(2) gauge symmetry: minimal non-Abelian symmetry $\rightarrow V(\phi)$ without additional fields
 - Protected by gauge symmetry
 - Less constrained by low-energy experimental data
- In a wide range of model parameters...

 $1 \lesssim f_{\rm eff}/M_{\rm Pl} \lesssim 100$, $10 \lesssim RM_{\rm Pl} \lesssim 100$

$$\mathcal{P}_{\mathcal{R}}^{1/2} \sim 10^{-5}, \ n_{\mathcal{R}} \sim 0.96, \ r \sim 0.05$$

consistent with the most recent observations