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SO(10) Yukawas and Seesaw

Break SO(10) to SM via: 〈16H〉, 〈45H〉 ∼ MGUT ; 〈10H〉, 〈16′
H〉 ∼ MWEAK .

Realistic Yukawa couplings are built from several operators.
16i16j10H : Contributes equally to all Yukawa couplings. (symm.)
16i16j10H45H : Differentiates quarks and leptons. (anti-symm.)
16i16j16H16

′
H : Contributes only to Yd and Ye. (symm. or antisymm.)

Neutrino terms
νiM ij

D
Nj recieves contributions from 16i16j10H ,16i16j10H45H .

1
m

(MR)ij 16i16j16H16H → N iM ij
R

Nj .
Integrating out the heavy fields leaves

Mν ≃ −MDM−1
R

(MD)T ∼ M2
WEAKm

M2
GUT

∼ 0.1eV.
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Philosophy

This set of operators is minimal for a realistic model, but more than sufficient to
numerically satisfy experimental values.

A number of economical models exist in the literature. Family symmetries used to
restrict the form of the Yukawa operators, leading to good fits for charged fermion
sector. (e.g. Albright and Barr, 2000; Babu, Pati and Wilczek, 2000; Raby and
Dermisek, 2000)

Neutrinos more problematic: generically additional degrees of freedom, but
models often require some fine tuning.

We approach the problem without assuming a priori family symmetries and impose
naturalness, i.e., no cancellations between two terms to a lower order of
magnitude. Analyze what constraints experiment imposes on Yukawa structure.

Focus on orders of magnitude only.
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Parameterization

Any matrix may be decomposed as

M ≡ LDR†

where

L†MM†L = R†M†MR = D2 ≡ diag

�
η2, ǫ2, 1

�
,

Hierarchical eigenvalues η ≪ ǫ ≪ 1 will be naturally generated if

D ≡ diag (η, ǫ, 1) , L ∼

0BB� 1 µ′

q
η
ǫ

ν′√η

µ′

q
η
ǫ

1 ρ′
√

ǫ

ν′√η ρ′
√

ǫ 1

1CCA , R ∼

0BB� 1 µ

q

η
ǫ

ν
√

η

µ

q

η
ǫ

1 ρ
√

ǫ

ν
√

η ρ
√

ǫ 1

1CCA .

Based on the quark hierarchy η ∼ 10−(4−5) and ǫ ∼ 10−(2−3).
µ, ν, ρ . 1 for naturalness.
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Geometric Hierarchy

For µ, ν, ρ ∼ 1

M ∼

0B�≤ η
√

ηǫ
√

η
√

ηǫ ≤ ǫ
√

ǫ
√

η
√

ǫ 1

1CA .

Order symmetric: Sum of symmetric and antisymmetric matrices shouldn’t cancel:
Mij ∼ Mji.

Off diagonal entries are dominant or codominant in determining smaller
eigenvalues.

Easily generated via U(1) symmetry using Froggatt-Nielsen mechanism.
(Froggatt-Nielsen, 1979)

Default natural structure given strong quark mass hierarchy. (Least restricted.)
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Experimental Neutrino Data

Neutrinos are a critical part of the impetus for, and therefore construction of SO(10)
models. In recent years a consensus picture of the data has emerged, including the
Large Mixing Angle (LMA) solution to the solar neutrino puzzle. Absolute masses are
unknown but oscillation experiments require:

tan2 θ12 = 0.45 ± 0.05 ; ∆m2
sol ≃ (8.0 ± 0.3) × 10−5 eV2 ;

sin2 2θ23 = 1.02 ± 0.04 ; ∆m2
atm ≃ (2.5 ± 0.2) × 10−3 eV2 ;

sin2 2θ13 = 0 ± 0.05.

(Strumia and Vissani, hep-ph/0606054)

Cosmology, 0νββ → Σ mν . 1 eV.
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Tri-bimaximal Solution

Set mixing angles θ12 = 35.2◦, θ13 = 0◦, θ23 = 45◦:

VPMNS =

0BBB� q

2
3

q

1
3

0

−

q

1
6

q

1
3

q
1
2q

1
6

−

q
1
3

q
1
2

1CCCA
Compare to CKM matrix in quark sector (Yao et al., 2006[PDG])

VCKM =

0B� 1 0.226 ± 0.002 [4.3 ± 0.3] × 10−3

0.23 ± 0.01 1 [4.2 ± 0.06] × 10−2

[7.4 ± 0.8] × 10−3 3.5 × 10−2 1

1CA

Strong quark mass hierarchies: mu ∼ 3.5 × 10−3mc ∼ 10−5mt.

Naturalness, Neutrinos, and GUTs – p. 7/18



The Experimental Effective Neutrino Matrix

VPMNS ≡ L†
eLν

For Me hierarchical, Le ∼ 1, Lν dominates.

Mν is diagonalized by Lν = Rν = VPMNS if

Mν = VPMNSDνV †
PMNS ∝

0B� �

m1 + 1
2
m2

�

− 1
2

(m1 − m2) 1
2

(m1 − m2)

− 1
2

(m1 − m2) 1
2

�

1
2
m1 + m2 + 3

2
m3

�
− 1

2

�
1
2
m1 + m2 − 3

2
m3

�

1
2

(m1 − m2) − 1
2

�
1
2
m1 + m2 − 3

2
m3

�
1
2

�
1
2
m1 + m2 + 3

2
m3

� 1CA .

We can write the physical masses m in terms of m1:

m1 = eiφ1 |m1| , m2 = eiφ2

q
|m1|2 + ∆2

sol , m3 =

q
|m1|2 + ∆2

sol ± ∆2
atm .

Note +(−) corresponds to normal(inverted) hierarchy.
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Effective Matrix Textures

Scanning throught the allowed ranges of m1, we find the following approximate textures.

1. Mν ∼

�

λ λ λ
λ 1 1
λ 1 1

�

, corresponding to m1 ≪ m2 ≃ ∆sol, normal hierarchy.

2. Mν ∼

�

0 λ λ
λ 1 1
λ 1 1

�

, corresponding to 2m1 ≃ m2 ≃ 2√
3
∆sol, φ2 − φ1 = π, normal

hierarchy.

3. Mν ∼

�

1 0 0
0 1 1
0 1 1

�

, corresponding to ∆sol(∆atm) . m1 ≃ m2 . ∆atm(
√

2∆atm),

φ2 − φ1 = 0, normal (inverted) hierarchy.

4. Mν ∼

�

1 0 0
0 1 0
0 0 1

�

, corresponding to degenerate masses, φ2 = 0, φ1 = 0.

5. Mν ∼

�

1 0 0
0 0 1
0 1 0

�

, corresponding to degenerate masses, φ2 = π, φ1 = π.

6. Mν ∼

�

1 1 1
1 1 1
1 1 1

�

, corresponding to degenerate masses, φ2 − φ1 = π.

λ ≡ ∆sol
∆atm

≃ 0.2
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Is there a natural case?

1. Mν ∼

�

λ λ λ
λ 1 1
λ 1 1

�

, Violates geometric hierarchy. Generically 1 large angle and

eigenvalues λ, 1, 1.

2. Mν ∼

�

0 λ λ
λ 1 1
λ 1 1

�

, Violates geometric hierarchy. Generically 1 large angle and

eigenvalues λ2, 1, 1.

3. Mν ∼

�

1 0 0
0 1 1
0 1 1

�

, Violates geometric hierarchy. Generically 1 large angle and

eigenvalues 1, 1, 1.

4. Mν ∼

�

1 0 0
0 1 0
0 0 1

�

, Degenerate eigenvalues but generically no large mixing angles.

5. Mν ∼

�

1 0 0
0 0 1
0 1 0

�

, Degenerate eigenvalues but generically no large mixing angles.

6. Mν ∼

�

1 1 1
1 1 1
1 1 1

�

, Naturally degenerate masses and large mixing angles (θ13 could

be problematic.)
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Deciphering the Seesaw Formula

Mν ≃ −MDM−1
R

(MD)T → R†
D

M−1
R

R∗
D = D−1

D
L†

D
MνL∗

DD−1
D

.

Apply to Case 6 (democratic Mν and MD parameterization.

R†
D

M−1
R

R∗
D ∼

0B� 1
η2

1
ηǫ

1
η

1
ηǫ

1
ǫ2

1
ǫ

1
η

1
ǫ

1

1CA
For µ′, ν′, ρ′ ≤ 1, the LD rotations are unimportant.

MR should exhibit a double hierarchy: eigenvalues scale as η2, ǫ2, 1!
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Constraints onRD

Imposing naturalness (non-cancellation) on all entries:

M−1
R

∼ D−1
D

L†
D

MνL∗
DD−1

D
.

Which in turn implies

µ .

r

η

ǫ
, ν .

√
η, ρ .

√
ǫ.

For η ∼ 10−4 and ǫ ∼ 10−2, this corresponds to µ, ρ . 10−1 and ν . 10−2.
Applying the same conditions to µ′, ν′, and ρ′ implies a Cascade Hierarchy:

MD ∼
0B�η η η

η ǫ ǫ

η ǫ 1

1CA .
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Recap

For any hierarchical texture of R†
D

M−1
R

R∗
D, M−1

R
retains the same or stronger

hierarchy.

RD smears out M−1
R

, large entries rotated into smaller.

Conversely, for a strong hierarchy in M−1
R

, RD must be close to diagonal
→constraints on µ, ν and ρ.

Non-trivial constraints on form of theoretical inputs MD and MR.
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Implementing a Cascade Hierarchy

Froggat-Nielsen mechanism:
Impose a U(1) × Z2 × Z′

2 symmetry.

Field 161 162 163 10H φ1 φ2 φ3

U(1) 2 1 0 0 −1 0 0Z2 − − + + + − +Z′
2 − + + + + + −

Φij
16i16j10H → M ij

1016i16j10H

Φ =

0B� 1
m4

(φ1)
4 1

m4
(φ1)3 φ3

1
m4

(φ1)2 φ2 φ3
1

m4
(φ1)3 φ3

1
m2

(φ1)2 1
m2

φ1 φ2
1

m4
(φ1)2 φ2 φ3

1
m2

φ1 φ2 1

1CA .

Thus

M10 ∼

0B�ζ4 ζ4 ζ4

ζ4 ζ2 ζ2

ζ4 ζ2 1

1CA .

ζ ≡ 〈φ〉 /m

and .
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Efficacy of Cascade Hierarchies

Cascade-like hierarchies correspond to small off-diagonal elements/unitary rotations.

Cascade hierarchies lead to better predictions for 3rd generation CKM couplings.

But, relatively large Cabibbo angle is more consistent with geometric hierarchy.

Small couplings in 16i16j10H45H lead to difficulties in naturally fitting Mu, Md,
Me hierarchies.

Problems may point to mixed cascade/geometric hierarchies.
Can we avoid these conclusions by relaxing any assumptions?
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Lopsidedness

At this point we seem to have somewhat robust conclusions and some potential
difficulties in building a complete theory. Can we modify our assumptions to come to
different conclusions?

It is possible to build order asymmetric Yukawa matrices → Large off-diagonal mixing
terms.

Hierarchy M L R

Geometric

�

ǫ
√

ǫ√
ǫ 1

� �
1

√
ǫ√

ǫ 1
� �

1
√

ǫ√
ǫ 1

�
Cascade ( ǫ ǫ

ǫ 1 )
�

1 ǫ
ǫ 1

� �
1 ǫ
ǫ 1

�
Lopsided ( ǫ ǫ

1 1 )

�
1 ǫ
ǫ 1

� �
1 1
1 1

�

Note trade-off in Lopsided matrices: as R becomes more mixed, L becomes closer to
diagonal.
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Large Rotations

Lopsided matrices constructed so as to generate large Rd and Le.
Ld (hence Re) must remain small for consistency with CKM.
Le no longer negligible in VPMNS.

R†
D

M−1
R

R∗
D = D−1

D
V0M ′

νV T
0 D−1

D
,

where

M ′
ν ≡ VPMNSDνV T

PMNS = L†
eMνL∗

e , V0 ≡ L†
D

Le .

M ′
ν has same experimentally allowed forms as Mν previously. Same analysis applies

except:

Le accounts for some (all?) large angles in VPMNS.

V0M ′
νV T

0 = L†
DMνLD no longer approximately democratic.

R†
D

M−1
R

R∗
D has a weaker hierarchy (not doubled).

Cascade-like constraints on MD are weakened.
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Outlook

SO(10) GUTs make a compelling case for gauge coupling and fermion
representation unification.

Additionally, they provide the most appealing mechanism for explaining small,
non-zero mν .

The appearance of large mixing angles and a weakly hierarchical or degenerate
mass spectrum is inconsistent with simple geometric Yukawa coupling patterns.

For order symmetric matrices, these facts point to a strong hierarchy in MR and
cascade-like Yukawa couplings.

These features can be built into models with simple symmetries, however simple
implementations run into difficulties fitting quark sector.

Lopsided model offer a way to mitigate these conclusions, a successful model may
incorporate features of lopsided and cascade textures.

Experimental determination of θ13, overall mass scale remain crucial to
discriminate between potential models.
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