A 4th generation in the MSSM

Zeke Murdock

In collaboration with S. Nandi and Z. Tavartkiladze

Outline

Motivations

- Constraints on $m_{b'}$ and $m_{t'}$ from EW precision data and the axial anomaly (ΔM_Z)
- Limits on $\tan \beta$ from the introduction of a 4th generation due to perturbativity requirements
- Introduction of model to extend limits on $\tan\beta$
- Conclusions

Motivation

- Why not have a 4th generation?
- Current experimental bounds of 4th generation (PDG): $m_{t'} > 220 \text{ GeV}$, $m_{b'} > 190 \text{ GeV}$, $m_{\tau'} > 100 \text{ GeV}$, $m_{\nu'} > 50 \text{ GeV}$
- To show there is room for a 4th generation in the MSSM
- The requirement of perturbativity limits $1 < \tan \beta < 1.17$, we would like to extend this range
- To investigate what masses are possible for b' and t'
- LHC will explore the region around 1 TeV giving a good chance to either find or rule out a 4th generation

Masses of 4th Generation Quarks

- The electroweak precision variables S, T, and U limit the difference between $m_{b'}$ and $m_{t'}$.
- New chiral fermions increase S, T, and U. For example^a:

$$S_f = \frac{N_c}{6\pi} \left\{ 2(4Y+3)x_1 + 2(3-4Y)x_2 - 2Y\ln\frac{x_1}{x_2} + \left[\left(\frac{3}{2} + 2Y\right)x_1 + Y \right] G(x_1) + \left[\left(\frac{3}{2} - 2Y\right)x_2 - Y \right] G(x_2) \right\}$$

Where $x_1 = \frac{m_1^2}{m_Z^2}$ and $G(x) = -4\sqrt{4x-1} \arctan\frac{1}{\sqrt{4x-1}}$

$$S = -0.13 \pm 0.10$$

 $T = -0.13 \pm 0.11$
 $U = 0.20 \pm 0.12$

^aHe, Polonsky, Su, hep-ph/0102144v2

$m_{b'}$ vs $m_{t'}$ as constrained by S, T, U

 $m_h = 115 \text{ GeV}, m_{\nu'} = 100 \text{ GeV}, m_{\tau'} = 150 \text{ GeV}, \tan \beta = 1.5$ $m_{t'}$ 375 350 325 300 275

Axial Anomaly

Loop corrections to the Z⁰ propagator are directly dependent upon heavy chiral fermions^a

- Their result generalized to 4 generations: $\Delta M_Z = \frac{1.6 \times 10^{-5}}{2M_Z} (m_t^2 + m_{t'}^2 - m_{b'}^2)$
- Not considered in previous work on the 4th generation, this further constrains the difference between the masses of the b' and t'

^aAnselm, Dombey, Leader, Phys Lett B312 (1993)

$m_{b'}$ vs $m_{t'}$ with ΔM_Z Constraint

Limits on $\tan \beta$

- In the MSSM $\tan \beta < 60$ due to b Yukawa exploding
- MSSM with 4 generations (MSSM4) was explored by Gunion, McKay, and Pois ^a. They found $\tan \beta < 3$
- The problem is that for $\tan \beta > 3$, the Yukawa coupling of the b' quark becomes non-perturbative near 1 TeV
- Current values of m_t and the lower limits on $m_{b'}$ and $m_{t'}$ cause the constraint on $\tan \beta$ to be even more restrictive
- With current data we find that no $tan \beta$ allows perturbativity up to the GUT scale

^aPhys. Lett. B 334 pp. 339-347 (1994)

$\tan \beta$ vs Cutoff Scale ($\lambda > 2$)

Our Model

Motivations:

- The limit on $\tan\beta$ is too narrow
- We introduce two new vector like Higgs doublets at the TeV scale to redefine the Yukawa coupling of the b', t', and τ' particles
- This allows $\tan \beta$ to be as large as 2.5 while the Yukawa couplings remain perturbative **up to the GUT scale**
- Increasing $\tan\beta$ will help increase the upper limit on the Higgs mass
- Below the scale of new physics we have the low-energy effective theory of the MSSM

Model

 $\lambda_{b'} = \lambda_{b'}^{(1)} + \lambda_D \frac{M}{M_H} \Theta(M - \mu)$

 $\lambda_{t'} = \lambda_{t'}^{(1)} + \lambda_U \frac{M'}{M_H} \Theta(M' - \mu)$

Model

The extra particles in the loops preserve the perturbativity of the Yukawa couplings $\lambda_{b'}^{(1)}$ and λ_D up to the GUT scale

$$16\pi^2 \frac{d}{dt} \lambda_{b'}^{(1)} = \lambda_{b'} \left[6 \left(\lambda_{b'}^{(1)} \right)^2 + 3\lambda_D^2 + \lambda_U^2 + \left(\lambda_{t'}^{(1)} \right)^2 + \left(\lambda_{\tau'}^{(1)} \right)^2 - c_i^d g_i^2 \right]$$

Conclusions and Outlook

- The 4th generation is still very much alive, but the gap to find it is closing
- The LHC will probe the likely mass range of the 4th generation extensively
- We have one model that allows Yukawa couplings to be perturbative up to GUT scale and increases the limits on $\tan \beta$
- From the axial anomaly $|m_{t'} m_{b'}| < 10 \text{ GeV}$
- Increased Higgs production due to new particles in the loop contributing to gluon fusion
- Larger $\tan \beta$ increases upper bound on m_h . At tree level, $m_h^2 = m_Z^2 \cos^2 2\beta + ...$
- New quarks increase higgs mass through new loop corrections: $\Delta(m_h^2)_{\rm new} \sim (60 \ {\rm GeV})^2$